검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 15

        1.
        2017.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study was conducted to investigate the effect of addition of lactic acid bacteria inoculants on quality of rye silage harvested at early heading stage. The nutritive values in lactic acid bacteria (LAB) inoculated group showed similar results to control. The pH of rye silage in LAB inoculation significantly decreased as compared to control (P<0.05). In addition, the content of lactic acid in LAB inoculation significantly increased (P<0.05), but the content of acetic acid in LAB treatments decreased. In addition, lactic acid bacterial counts in LAB inoculation significantly increased as compared to control (P<0.05). Therefore, we suggest that rye silage could be improved by LAB inoculation.
        4,000원
        2.
        2017.09 KCI 등재 구독 인증기관·개인회원 무료
        The present study analyzes the role of Lactic Acid Bacteria Mixture (LBM) on improving rye silage quality. Rye of four different stages (Booting, Heading, Flowering, and Late flowering) was collected and silage was prepared. The nutrient profile analysis of experimental silage groups showed no significant changes between control and LBM inoculation. Interestingly, the pH of rye silage in LBM treatments showed significant reduction than control (p<0.05) in all stages of rye silage. However, lowest pH (3.69) resulted on booting stage among other stages of rye. Subsequently significant lactic acid production was noted in all stages of LBM inoculation than control. Conversely maximum lactic acid production of (5.33%DM) was noted at booting stage followed by (4.86%DM) in heading stage. Further the lactic acid bacterial (LAB) count in LBM inoculated group showed significant increase than control. Similarly, the silage of booting stage group registered maximum LAB population (63.7 ×106CFU/g) after that heading stage (32.3 ×106CFU/g). Further significant reduction in yeast growth and no fungal growth was noted in all LPM treatment groups. Hence, LBM inoculants could be a better additive for improving rye silage quality.
        5.
        2017.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study was conducted to investigate the effect of microbial inoculation as additive consisting of novel lactic acid bacteria on quality and fermentation characterization of Miscanthus sinnensis silages.The contents of crude protein, acid detergent fiber, neutral detergent fiber in treatments of additive of lactic acid bacteria (ALAB) inoculation had similar to control. pH of Miscanthus sinnensis (MS) silage in treatments of ALAB inoculation significantly decreased as compared to control (p<0.05). The content of lactic acid in in treatments of ALAB inoculation significantly increased (p<0.05), but the content of acetic acid in treatments of ALAB inoculation decreased. In addition, number of lactic acid bacteria in treatments of ALAB inoculation significantly increased as compared to control (p<0.05). Therefor, we suggest that MS silage improved by inoculation of additive consisting of novel lactic acid bacteria.
        4,000원
        13.
        2015.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The objective of the study was to measure the beneficial effects of lactic acid bacteria (LAB) inoculation on the nutritive value of oat silage collected from thirteen regions in the Republic of Korea. The contents of crude protein, acid detergent fiber (ADF), neutral detergent fiber (NDF) and crude ash (CA) were slightly lower in LAB inoculated silage when compared with the control silage, whereas inoculation of LAB resulted in increased total digestible nutrient (TDN). Higher number of LAB, but lower count of yeast and fungi indicated the effectiveness of the LAB inoculation on oat silage fermentation. LAB inoculation resulted in low pH silage, which may prevent undesirable microbial growth. The LAB inoculation promoted lactic acid dominant fermentation with marginal levels of acetic acid and butyric acid in oat silage. These data suggest that the LAB inoculation may preserve oat silage at better quality for ruminant animal production.
        4,000원
        14.
        2015.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        An experiment was carried out to determine the homofermentative activity of Lactobacillus plantarum KCC-10 and KCC-19 on the ensiling of whole crop barley (WCB). The crude protein in the silages was slightly higher in the KCC-10 and KCC-19 treatments compared to the control, but there was no significant difference between the two inoculant-treated silages. Nutrient parameters such as acid detergent fiber, neutral detergent fiber and in vitro dry matter digestibility in L. plantarum KCC-10 and KCC-19 treated silages did not differ from those in the control silage. The lactic acid content increased in KCC-10 and KCC-19 treated silage when compared with the control silage but the contents of acetic acid and butyric acid produced in KCC-10 and KCC-19 treated silages were similar with the control silage. Further, the number of lactic acid bacteria (LAB) in KCC-10 treated silage demonstrated a significant increase when compared to the control. Especially, KCC-19 treated silage showed greater lactic acid bacterial growth potential. Other microbes such as yeast and fungi were not detected in KCC-10 and KCC-19 treated WCB silages. Hence, this study suggests that the addition of L. Plantarum KCC-10 and KCC-19 to the WCB silage can improve fermentation quality for the production of high-quality silage.
        4,000원
        15.
        2015.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        An investigation was carried out to evaluate the potential role of Lactobacillus Plantarum KCC-10 and KCC-19 on the quality and fermentation characterization of Italian ryegrass (IRG) silages. The physiochemical properties of IRG silage such as crude protein content, neutral detergent fiber, acid detergent fiber, total digestible nutrient and in vitro dry matter digestibility were not affected by KCC-10 and KCC-19. The pH of IRG silage in KCC-10 and KCC-19 treatments decreased compared to the control (p<0.05), while the lactic acid content in KCC-10 and KCC-19 treatments increased compared to the control (p<0.05). In addition, the number of lactic acid bacteria (LAB) in the KCC-10 treatment increased compared to the control (p<0.05). The number of lactic acid bacteria in KCC-19 increased, but there was no significant difference in all treatments. Therefore, we recommend L. plantarum KCC-10 and KCC-19 as potential additive candidates in IRG silage with lots of advantages.
        4,000원