우리나라에 축산물을 수출한 국가들이 2022년과 2023년 에 제출한 2019-2022년 국가별 잔류물질검사프로그램(NRP) 자료를 바탕으로 축산물 유형별, 국가별로 잔류허용기준 을 위반한 동물용의약품과 환경오염물질의 현황을 분석하 였다. 가장 많이 위반된 잔류물질은 네오마이신 2 4 1건, 페 니실린G 183건, 겐타마이신 151건, 세프티오퍼 113건, 니카 바진 103건 등이였고 축산물별로는 소고기, 돼지고기, 가 금육, 우유, 계란 등의 순서로 나타났다. 잔류 위반이 가 장 많았던 소고기에서는 페니실린G, 세프티오퍼, 플루니신 , 네오마이신, 벤질페니실린, 멜록시캄, 플로르페니콜, 질 파테롤 등 전염병 치료에 사용되는 항생제와 해열제 및 성장 촉진에 사용되는 동물용의약품이 주로 검출되었지만 , 돼지고기에서는 성장촉진을 목적으로 사용되는 락토파민 과 항생제인 독시사이클린, 클로람페니콜, 벤질페니실린, 난드롤론, 티오라실, 스트렙토마이신 및 임신 촉진에 사용 되는 호르몬이 가장 흔하게 검출된 것으로 나타났다. 가 금육에서는 콕시듐증 치료에 사용되는 항생제인 니카바진 이 가장 많이 위반되었으며, 스트렙토마이신, 아미노글리 코사이드 항생제, 벤질페니실린, 독시사이클린 및 기타 항 생제가 그 뒤를 이었다. 동물용의약품의 잔류 위반은 많 은 국가에서 보고되고 있으나, 다이옥신과 PCB와 같은 환 경오염 물질의 잔류는 주로 유럽 국가에서 보고되었다. 국 가별 잔류물질의 차이는 각국에서 사육되는 가축과 사육 관리 방식의 차이에 의한 것으로, 소고기의 잔류 수준이 높은 것은 소는 다른 동물에 비해 질병 발생 시 개체별로 치료되기 때문일 것으로 추정된다. 본 연구 결과는 수입 축산물의 안전성 확보를 위하여 국가별, 축산물별로 중점 적으로 검사가 필요한 물질을 제시함으로써 매년 실시하 는 수입 축산물 잔류물질검사를 보다 과학적이고 효율적 으로 수행할 수 있는 기반을 제공하였다.
This study investigated the flowering response of three Korean native Aster species, namely A. hayatae, A. spathulifolius, and A. koraiensis, to varying photoperiods. Three-month-old plants propagated from cuttings were grown under four different photoperiods: 9, 12, 14, and 16 h. Aster hayatae flowered under all conditions, with flowering rates of 92%, 85%, 65%, and 27% under 9-, 12-, 14-, and 16-h photoperiods, respectively. Flowering in A. hayatae was promoted by shorter photoperiods, classifying it as a facultative short-day plant. Aster spathulifolius flowered only under 9- and 12-h photoperiods, with no significant difference between these treatments, suggesting that the species is an obligate short-day plant. However, given the low A. spathulifolius flowering rates of 27% and 13% under 9- and 12-h photoperiods, respectively, further research is required. Aster koraiensis did not flower under any photoperiod, possibly due to vernalization requirements or juvenility. These findings offer valuable insights into the photoperiodic flowering responses of these three Korean native Aster species, enhancing our understanding of their ecological traits and potential horticultural applications.
Gentamicin is an aminoglycoside antibiotic effective against aerobic gram-negative bacteria and is also used in veterinary medicine, particularly in the swine and bovine industries. However, no gentamicin product is currently approved for treating equine diseases in Korea. The present study aims to examine the time-dependent residue of gentamicin in horses after intravenous injection (IV) via jugular vein. The test product was injected at 6.6 mg/kg BW via jugular vein in nine horses. Blood was collected from the horse's jugular vein at 15 minutes, 30 minutes, 1, 4, 8, 12, 24 and 48 hours after injection. To purify the gentamicin in serum, 100μL of 20 mM HFBA in DW, 100 μL of 30% trichloroacetic acid and 300 μL of 20 mM heptafluorobutyric acid (HFBA) in acetonitrile (ACN) were added to 500 μL of serum and supernatant was applied to LC-MS/MS after centrifugation. LC-MS/MS-8050 analyzed the level of gentamicin in serum with Electrospray ionization (ESI) and multiple reaction monitoring (MRM) positive mode. Gentamicin C1 was 478 m/z and product ions were 322, 157 m/z. Precursor ion of Gentamicin C1a was 450 m/z and product ions were 322, 160 m/z. Precursor ion of Gentamicin C2 and C2a was 464 m/z and product ions were 322, 160 m/z. The LC column was a C18 and mobile phase composed of 20 mM HFBA in 5% ACN and 20 mM HFBA in 50% ACN. The amount of gentamicin was calculated by adding four components of gentamicin (C1, C1a, C2 and C2a). The pharmacokinetic parameters of gentamicin were calculated by the WinNonlin program. The Cmax of gentamicin in horse serum was 93 ± 17 μg/kg and the Tmax was 0.25 ± 0 hours. The T1/2 was 6.41 ± 2.32 hours and the CLt was 0.05 ± 0.01L/hr/kg. The Vd was shown as 0.44 ± 0.13 L/kg and the MRT was 1.98 ± 0.55 hours. In conclusion, our data provides useful pharmacokinetic parameters for gentamicin in horses following IV injection.
In this study, an simultaneous LC-MS/MS multi-residue analytical method was developed and validated for the residues of six neonicotinoid insecticides (acetamiprid, clothianidin, dinotefuran, imidacloprid, thiacloprid, and thiamethoxam) in honey. Sample preparation included a combination of QuEChERS extraction kit and liquid-liquid extraction method to effectively extract pesticide components from the honey matrix and optimized analytical conditions to achieve high sensitivity and selectivity. The limits of detection (LOD) and the limits of quantitation (LOQ) were set in the range of 6-15 ng/mL and 19-44 ng/mL, respectively and the correlation coefficient (R²) was greater than 0.99, confirming good linearity. In addition, the intra-day recoveries for each pesticide were 75-104%, and the coefficient of variation (CV) was less than 20%, which met the guideline recommended by the Ministry of Food and Drug Safety. The LC-MS/MS method developed in this study is expected to be used as a multi-residue analysis method for 6 neonicotinoid pesticides in honey.
본 조사지인 돌리네 습지보호지역은 경북 문경시 산북면 굴봉산 정상부에 위치하였으며, 물이 고이기 힘든 돌리네(doline) 지형에 형성된 희귀 습지이다. 뿐만 아니라 멸종위기종과 법적보호종이 분포하는 등 생물다양성 또한 매우 풍부한 것으로 평가되고 있다. 그러나 습지보호지역 주변으로 과수원 등 경작지가 형성되어 있어, 관리 및 보전을 위한 조사 및 대책이 필요하다. 따라서 본 조사에서는 습지보호지역의 체계적인 관리를 위하여 돌리네 습지의 곤충상을 조사하였다. 조사 방법에는 곤충의 다양한 습성과 서식환경을 고려하여, Searching, Sweeping, Pitfall trap, Bucket trap으로 총 4가지의 채집방법으로 조사를 실시하였다. 그 결과 총 11목 82과 188속 237종이 확인되었으며, 이중 딱정벌레목이 가장 많이 출현하였다. 특이사항으로 환경부지정종 51종(중복포함)이 조사되었으며, 그중 멸종위 기종 1종이 확인되었다. 본 연구를 통해 돌리네 습지보호지역의 곤충상을 파악하고 관리 및 보전에 대한 기초자료를 제공하고자 한다.
Structural stability of a waste form can be provided by the waste form itself (steel components, etc.), by processing the waste to a stable form (solidification, etc.), or by emplacing the waste in a container or structure that provides stability (HICs or engineered structure, etc.). The waste or container should be resistant to degradation caused by radiation effects. In accordance with the requirements for the domestic waste acceptance criteria, irradiation testing of solidified waste forms containing spent resin should be conducted on specimens exposed to a dose of 1.0E+6 Gy and other material 1.0E+7 Gy. Expected cumulative dose over 300 years is about 1.770E+6 Gy for spent resin and 0.770E+6 Gy for dried concentrated waste generated from NPPs generally. According to NRC Waste Form Technical Position, to ensure that spent resins will not undergo adverse degradation effects from radiation, resins should not be generated having loadings that will produce greater than 1E+6 Gy total accumulated dose. If it necessary to load resins higher than 1E+6 Gy, it should be demonstrated that the resin will not undergo radiation degradation at the proposed higher loading. This is the recommended maximum activity level for organic resins based on evidence that while a measurable amount of damage to the resin will occur at 1E+6 Gy, the amount of damage will have negligible effect on disposal site safety. Cementitious materials are not affected by gamma radiation to in excess of 1E+6 Gy. Therefore, for cement-stabilized waste forms, irradiation qualification testing need not be conducted unless the waste forms contain spent resins or other organic media or the expected cumulative dose on waste forms containing other materials is greater than 1E+7 Gy. Testing should be performed on specimens exposed to IE+6 Gy or the expected maximum dose greater than 1E+6 Gy for waste forms that contain ion exchange resins or other organic media or the expected maximum dose greater than 1E+7 Gy for other waste forms. This is suggestion as a review result that requirement for irradiation testing of solidified waste forms has something to be revise in detail and definitively.
Domestic NPPs had produced the paraffin-solidifying concentrate waste (PSCW) for nearly 20 years. At that time radioactive waste management policy of KHNP was to reduce the volume and to store safely in site. The PSCW has been identified not to meet the leaching index after introducing the treatment system. PSCW has to be treated to meet current waste acceptance criteria (WAC) for permanent disposal. PSCW consists of dried concentrate 75% and paraffin 25% of volume. When PSCW is separated into a dried concentrate and a paraffin by solubility, total volume separated is increased twice. Final disposal volume of dried concentrate can reach to several times when solidifying by cement even considering exemption. Application of polymer solidification technology is difficult because dried concentrate is hard to make form to pellet. When PSCW is packaged in High Integrity Container (HIC), volume of PSCW is equal to the volume before package. The packaging process of HIC is simple and is no necessary of large equipment. It is important to recognize that HIC was developed to replace solidification of waste. HIC has as design goal a minimum lifetime of 300 years under disposal environment. The HIC is designed to maintain its structural integrity over this period, to consider the corrosive and chemical effects of both the waste contents and the disposal environment, to have sufficient mechanical strength to withstand loads on the container and to be capable of meeting the requirements for a Type A transport Package. The Final waste form is required for facilitating handling and providing protection of personnel in relation to solidification, explosive decomposition, toxic gases, hazardous material, etc. Structural stability of final waste form is required also. Structural stability of the waste can be provided by the waste itself, solidifying or placing in HIC. Final waste form ensure that the waste does not structurally degrade and affect overall stability of the disposal site. The HIC package contained PSCW was reviewed from several points of view such as physicochemical, radiological and structural safety according to domestic WAC. The result of reviewing shows that it has not found any violation of WCP established for silo type disposal facility in Gyeongju city.