The composition of the deicer sprayed on the highway is spreading over the highway by the scattering or snow removal activity, or car movement and consequently affecting the vegetation environment around the highway. These are the cause of the damage of fruit trees and crops, and also the cause of corrosion of highway structures. The goal of this study is to estimate the detected range of deicer components from a highway. The concentration of the deicer components in gauze and soil were investigated according to the crossing distance from the highway. The data collected were then used to estimate the concentration range of deicer components in a rage of distance up to 100 m from the highway where the deicer was spread. The sample time and weight of gauze were measured before and after installation, and the soil was collected at more than three points in parallel with the highway at the gauze installation point. The components in gauze and soil were investigated in addition to the deicer components (Ca2+, Na+, Cl-) as well as Mg2+ and K+. As Ca2+ and Cl- components of deicer were affected by agricultural use, Na+ component was selected as a tracer and further SAR (Sodium Adsorption Ratio) of soil was analyzed to examine the degree of influence on vegetation indirectly. The gauze concentration was evaluated by the concentration of the deicer ingredient at the background concentration of the blank gauze. The total amount of the deicer sprayed in the study road for 4 months (winter season) was about 93 ton/km. In the gauze test, the spread of the deicer was detected at a distance of 100 m in study area, but the concentration of the deicer in the gauze by distance decreased rapidly within 10 m from the highway. And concentration of the deicer components in gauze and soil came down after rainy season (August ~ Sep.). The results showed that the components of the deicer could be spread widely by the wind. The effective range of the deicer on vegetation based on SAR in soil was estimated to be less than 20 m from the highway. This study examines the concentration changes of the deicer components in gauze and soils and shows that deicer components sprayed on the highway are accumulated and moved over time by wind, snow removal, terrain, water system and land use around the highway.
A soybean cultivar for soy-paste, ‘Hwangkeumol’, was developed from the cross between SS92414 (crossing line of ‘Pokwangkong’ and ‘Suwon163’) and ‘Hwaeomputkong’ by soybean breeding team in the National Institute of Crop Science (NICS) in 2010. A promising line, SS99409-2B-11-5-4, was selected and designated as the name of ‘Milyang202’. It was prominent and had good result from regional adaptation yield trials for three years from 2008 to 2010 and released as the name of ‘Hwangkeumol’. It has a determinate growth habit, white flower, gray pubescence, yellow seed coat, yellow hilum, spherical seed shape and large seed (28.6 grams per 100 seeds). Maturity date of ‘Hwangkeumol’ was as early as September 15th. Therefore it is suitable for double cropping system. ‘Hwangkeumol’ was resistant to bacterial pustule and resistant to soybean mosaic virus, the major soybean diseases in Korea and tolerant to lodging in fields. The average yield of ‘Hwangkeumol’ was 2.51 ton per hectare in the regional yield trials carried out for three years from 2008 to 2010.
Cytoplasmic male sterility (CMS) and fertility restoration have been utilized as valuable tools for F_1-hybrid seed production in many crops despite laborious breeding processes. Molecular markers for the selection of CMS-related genes help reduce the expenses and breeding times. A previously reported genomic region containing the Ppr-B gene, which is responsible for restoration of fertility and corresponds to the Rfo locus, was used to develop gene-based or so-called "functional" markers for allelic selection of the restorer-of-fertility gene (Rfo) in F_1-hybrid breeding of radish (Raphanus sativus L.) Polymorphic sequences among Rfo alleles of diverse breeding lines of radish were examined by sequencing the Ppr-B alleles. However, presence of Ppr-B homolog, designated as Ppr-D, interferes on specific PCR amplification of Ppr-B in certain breeding lines. The organization of Ppr-D, resolved by genome walking, revealed extended homology with Ppr-B even in the promoter region. Interestingly, PCR amplification of Ppr-D was repeatedly unsuccessful in certain breeding lines implying the lack of Ppr-D in these radishes. Ppr-B could only be successfully amplified for analysis through designing primers based on the sequences unique to Ppr-B that exclude interference from Ppr-D gene. Four variants of Rfo alleles were identified from 20 breeding lines. A combination of three molecular markers was developed in order to genotype the Rfo locus based on polymorphisms among four different variants. These markers will be useful in facilitating F_1-hybrid cultivar development in radish.