The dry-milling technique was used for mixing and crushing oxides and graphite powders. The ratio of ball-to-powder was 30:1 and argon gas was filled in jar. The excess carbon was of the stoichiometric amount. The dry-milling was carried for 20 hours. The mixed powders were reduced and carburized at for 3 hours flowing Ar gas in tube furnace. The dry-milled powders showed the wide diffraction patterns of X-ray. The reactions of reduction and carburization were completed in 3 hours at . After the reactions, the mean size of WC particles was about 200 nm. The content of free carbon in WC/Co mixed powders was less as the reaction temperature increased.
Nano-sized WC particles in WC/Co composite powders were synthesized by mechanochemical method. The raw powders and graphite) were mixed by planetary milling for 30 hours. The compositions were WC-10 and -20 wt% Co added VC and . The direct reduction and carburization of the mixed powders were carried at for 1 to 3 hours under flowing Ar gas. The mean size of WC particles in WC/Co composite powders was about 16 nm. The resultant powders were compacted and sintered at for 0.5 hour. After sintering the mean size of WC particles was about 50 nm.
Direct reduction and carburization process was thought one of the best methods to make nano-sized WC powder. The oxide powders were mixed with graphite powder by ball milling in the compositions of WC-5,-10wt%Co. The mixture was heated at the temperatures of for 5 hours in Ar. The reaction time of the reduction and carburization was decreased as heating temperatures and cobalt content increased. The mean size of WC/Co composite powders was about 260 nm after the reactions. And the mean size of WC grains in WC/Co composite powders was about 38 nm after the reaction at for 5 hours.
To improve the mechanical properties of WC-Co cemented carbides, the dual composite was studied. The compositions of granule and matrix were nano-sized WC-6 wt% Co(granule) and normal sized WC-20 wt% Co(matrix), respectively. The granules were grouped 50, 100 and and mixed with WC and Co powders as the volume fractions of granule to matrix were 50 to 50, 40 to 60 and 30 to 70. These compacts were sintered at for 10 minutes in vacuum. The microstructure, transverse rupture strength and wear resistance were investigated.