Because multiple ovulation embryo transfer (MOET) in cattle includes several benefits such as wide spreading of genetically superior offspring for long distance, this biotechnological method has been widely applied to Hanwoo. When the recipients are not stayed close after embryo recovery from donor, the embryos are moved to other farms via several vehicles (car, train, and airplane). However, air travel induces lesser oxygen level, increased vibration, lower air pressure, higher noise, and increased exposure of cosmic radiation to living things than ground level. It was still unknown that fresh embryos obtained from multiple ovulation of Hanwoo could maintain their fertility after being transported via air plane, the present case report introduced a clinical case of MOET in Hanwoo after shipping fresh embryos via air transportation. The donor was multi-ovulated via follicle-stimulating hormone series of injection, which was followed by a gonadotrophin-releasing hormone injection and artificial insemination twice. The embryos were recovered by the uterine flushing, packed in ministraws, transported to recipients for 6 h including 1 h air flight, and then transferred to the synchronized recipients. During pregnancy diagnosis of early gestation period, 5 of 7 recipients (71.4%) presented no heat signs and showed fetal sacs with fluid under transrectal ultrasonography. After normal gestation period, all recipients naturally delivered healthy calves (male n = 2 and female n = 3) without abortion, stillbirth, and premature birth. The present case report indicated that transportation of fresh embryos for MOET via domestic flight in Korea did not affect to their fertility.
Current studies have revealed the capacity of mesenchymal stem cells (MSCs) in term of immunomodulatory properties, and this distinct potential is downgraded according to the disease duration of patients-derived MSCs. In order to enhance the immunomodulatory and anti-tumorigenic properties of the rheumatoid arthritis (RA) joints-derived MSCs, we aggregate synovial fluid-derived MSCs from RA joints (RA-hMSCs) into 3D-spheroids by the use of hanging drop culture method. Cells were isolated from synovial fluids of RA joints with longstanding active status over 13 years. For aggregation of RA-hMSCs into 3D-spheroids, cells were plated in hanging drops in 30 μL of advanced DMEM (ADMEM) containing 25,000-30,000 cells/ drop and cultured for 48 h. To analyze the comparative immunomodulatory effects of 3D-spheroid and 2D monolayer cultured RA-hMSCs and then cells were cultured in ADMEM supplemented with 20% of synovial fluids of RA patients for 48 h and were evaluated by qRT-PCR for their expression of mRNA levels of inflammatory and antiinflammatory markers. Cellular aggregation of RA-hMSCs was observed and cells were aggregate into a single sphere. Following treatment of RA patient’s synovial fluids into the RA-hMSCs, spheroids formed RA-hMSCs showed significantly (p < 0.05) higher expression of TNFα stimulated gene/protein 6 (TSG-6) than the monolayer cultured RAhMSCs. Therefore, the 3D-spheroid culture methods of RA-hMSCs were more effective than 2D monolayer cultures in suppressing inflammatory response treated with 20% of RA-synovial fluids by expression of TNFα (TSG-6) according to the immune response and enhanced secretion of inflammatory factors.
The ovary undergoes substantial physiological changes along with estrus phase to mediate negative/positive feedback to the upstream reproductive tissues and to play a role in producing a fertilizable oocyte in the developing follicles. However, the disorder of estrus cycle in female can lead to diseases, such as cystic ovary which is directly associated with decline of overall reproductive performance. In gene expression studies of ovaries, quantitative reverse transcription polymerase chain reaction (qPCR) assay has been widely applied. During this assay, although normalization of target genes against reference genes (RGs) has been indispensably conducted, the expression of RGs is also variable in each experimental condition which can result in false conclusion. Because the understanding for stable RG in porcine ovaries was still limited, we attempted to assess the stability of RGs from the pool of ten commonly used RGs (18S, B2M, PPIA, RPL4, SDHA, ACTB, GAPDH, HPRT1, YWHAZ, and TBP) in the porcine ovaries under different estrus phase (follicular and luteal phase) and cystic condition, using stable RG-finding programs (geNorm, Normfinder, and BestKeeper). The significant (p < 0.01) differences in Ct values of RGs in the porcine ovaries under different conditions were identified. In assessing the stability of RGs, three programs comprehensively agreed that TBP and YWHAZ were suitable RGs to study porcine ovaries under different conditions but ACTB and GAPDH were inappropriate RGs in this experimental condition. We hope that these results contribute to plan the experiment design in the field of reproductive physiology in pigs as reference data.
Because sows are industrially vital for swine production, monitoring for their health or disorder status is important to ensure high reproductive performance. Especially, ambient temperature changes in different season, especially during summer, are directly influenced to the reproductive performance of sows. Although the serum biochemical parameters are widely applied in the veterinary medicine with wide ranges for the physiological process, the values are also influenced by several factors such as age, breed, gender, and stress. In addition, domestic sows in Koreaspecific reference interval (RI) for serum biochemistry has not been established yet. Therefore, the present study was aimed to evaluate seasonal variation of RIs in the serum biochemistry in domestic sows in Korea at different seasons and to establish normal RIs using a RI finding program (Reference Value Advisor). Significant difference (p < 0.05) on the different seasons were identified in several serum biochemical parameters including BUN, CRE, GGT, GLU, ALB, TP, LDH and Na in sows. Therefore, we further established RIs, specific in domestic sows in Korea regardless of season. The established RIs based on the serum biochemical values provide a baseline for interpreting biochemical results in the domestic sows in Korea, regardless of seasonal effect. It may contribute to develop a strategy for better reproductive performance by improving breeding management practice and evaluating health of pig herds, which facilitate to avert the economic loss in summer infertility in sows.
This study was performed to identify the effect of synovium graft on conjunctiva in rabbits after dry eye induction. Six New Zealand White rabbits were used as dry eye models. Both eyes were divided to two groups as control and synovium graft group. The synovium graft was performed in fourth week after dry eye modeling. Quantitative change of tears through Schirmer tear test (STT), qualitative change of tear film through tear film break up time (TFBUT), and damage of cornea through fluorescein staining were observed for 10 weeks at intervals of two weeks. Histological examination was performed to evaluate cornea and conjunctiva at tenth week. In both groups, STT and TFBUT were significantly decreased in 4 weeks after modeling compared to 0 weeks (p < 0.05) . After synovium graft, there were increases in STT value at 4 weeks and TFBUT at 4 and 6 weeks in graft group (p < 0.05). Corneal fluorescein staining showed no significant difference between the two groups. In histopathological examination, grafted synovium was detected as round to ovoid ingression folds, well attached to grafted regions with 0.11 ± 0.04 mm2 (range, 0.05- 0.16 mm2). These results indicated that the synovium graft on the conjunctiva had an effect on the qualitative and quantitative improvement of the tear film even though there was no histological change.
Under the stressed condition, a complex feedback mechanism for stress is activated to maintain homeostasis of the body and secretes several stress hormones. But these stress hormones impair synthesis and secretion of the reproductive hormones, followed by suppression of ovarian function. Cytochrome P450 1A2 (CYP1A2) plays a major role in metabolizing exogenous substances and endogenous hormones, and its expression is recently identified at not only the liver but also several organs with respect to the pancreas, lung and ovary. Although the expression of CYP1A2 can be also affected by several factors, understanding for the changed pattern of the ovarian CYP1A2 expression upon stress induction is still limited. Therefore, CYP1A2 expression in the ovaries from immobilization stress-induced rats were assessed in the present study. The stress-induced rats in the present study exhibited the physiological changes in terms of increased stress hormone level and decreased body weight gains. Under immunohistological observation, the ovarian CYP1A2 expression in both control and the stressed ovary was localized in the antral to pre-ovulatory follicles. However, its expression level was significantly (p < 0.01) higher in the stress-induced group than control group. In addition, stress-induced group presented more abundant CYP1A2-positive follicles (%) than control group. Since expression of the ovarian CYP1A2 was highly related with follicle atresia, increased expression of CYP1A2 in the stressed ovary might be associated with changes of the ovarian follicular dynamics due to stress induction. We hope that these findings have important implications in the fields of the reproductive biology.
Cytochrome P450 1A2 (CYP1A2) is a member of the cytochrome P450 superfamily enzymes in mammals and plays a major role in metabolizing endogenous hormones in the liver. In recent days, CYP1A2 expression has been found in not only the liver but also other tissues including the pancreas and lung. However, little information is available regarding the expression of CYP1A2 in the ovary, in spite of the facts that the ovarian follicle growth and atresia are tightly associated with controls of endocrine hormonal networks. Therefore, the expression of CYP1A2 in the ovaries of prepubertal and pubertal rats was investigated to assess its expression pattern and puberty-related alteration. It was demonstrated that the expression level of CYP1A2 was significantly (p < 0.01) higher in the pubertal ovaries than prepubertal counterparts. At the ovarian follicle level in both groups, whereas CYP1A2 expression was less detectable in the primordial, primary and secondary follicles, the strongly positive expression of CYP1A2 was localized in the granulosa cell layers in the antral and pre-ovulatory follicles. However, the ratio of CYP1A2-positive ovarian follicle was significantly (p < 0.01) higher in the ovary of pubertal group (73.1 ± 3.1%) than prepubertal one (41.0 ± 10.5%). During the Immunofluorescence, expression of CYP1A2 was mainly localized in Fas-positive follicles, indicating the atretic follicles. In conclusion, these results suggested that CYP1A2 expression was mainly localized at the atretic follicular cells and affected by the onset of puberty. Further study is still necessary but we hypothesize that CYP1A2 expresses in the atretic follicles to metabolize residue of the reproductive hormones. These findings may have important implications for the fields of reproductive biology of animals.
Telomeres are known as a specialized region in the end of chromosomes to protect DNA destruction, but their lengths are shortened by repetition of cell division. This telomere shortening can be preserved or be elongated by telomerase and TERT expression. Although a certain condition in the cells may affect to the cellular and molecular characteristics, the effect of differentiation induction to telomere length and telomerase activity in mesenchymal stem cells (MSCs) has been less studied. Therefore, the present study aimed to uncover periodical alterations of telomere length, telomerase activity and TERT expression in the dental pulp-derived MSCs (DP-MSCs) under condition of differentiation inductions into adipocytes and osteoblasts on a weekly basis up to 3 weeks. Shortening of telomere was significantly (p < 0.05) identified from early-middle stages of both differentiations in comparison with undifferentiated DP-MSCs by non-radioactive chemiluminescent assay and qRT-PCR method. Telomere length in undifferentiated DP-MSCs was 10.5 kb, but the late stage of differentiated DP-MSCs which can be regarded as the adult somatic cell exhibited 8.1-8.6 kb. Furthermore, the relative-quantitative telomerase repeat amplification protocol or western blotting presented significant (p < 0.05) decrease of telomerase activity since early stages of differentiations or TERT expression from middle stages of differentiations than undifferentiated state, respectively. Based on these results, it is supposed that shortened telomere length in differentiated DP-MSCs was remained along with prolonged differentiation durations, possibly due to weakened telomerase activity and TERT expression. We expect that the present study contributes on understanding differentiation mechanism of MSCs, and provides standardizing therapeutic strategies in clinical application of MSCs in the animal biotechnology.
Because mesenchymal stem cells (MSCs) maintain distinct capacities with respect to self-renewal, differentiation ability and immunomodulatory function, they have been highly considered as the therapeutic agents for cell-based clinical application. Of particular, differentiation condition alters characteristics of MSCs, including cellular morphology, expression of gene/protein and cell surface molecule, immunological property and apoptosis. However, the previous results for differentiation-related apoptosis in MSCs have still remained controversial due to varied outcomes. Therefore, the present study aimed to disclose periodical alterations of pro- and anti-apoptosis in MSCs under differentiation inductions. The human dental pulp-derived MSCs (DP-MSCs) were differentiated into adipocytes and osteoblasts during early (1 week), middle (2 weeks) and late (3 weeks) stages, and were investigated on their apoptosis-related changes by Annexin V assay, qRT-PCR and western blotting. The ratio of apoptotic cell population was significantly (p < 0.05) elevated during the early to middle stages of differentiations but recovered up to the similar level of undifferentiated state at the late stage of differentiation. In the expression of mRNA and protein, whereas expressions of pro-apoptosis-related makers (BAX and BAK) were not altered in any kind and duration of differentiation inductions, anti-apoptosis marker (BCL2) was significantly (p < 0.05) elevated even at the early stage of differentiations. The recovery of apoptotic cell population at the late stage of differentiation is expected to be associated with the response by elevation of anti-apoptotic molecules. The present study may contribute on understanding for cellular mechanism in differentiation of MSCs and provide background data in clinical application of MSCs in the animal biotechnology to develop effective and safe therapeutic strategy.
Gonadotropin releasing hormone (GnRH) centrally plays a role in control of the hypothalamicpituitary- gonadal axis-related hormone secretions in the reproductive neuroendocrine system. In addition, hormone receptors like luteinizing hormone receptor (LHR) are important element for hormones to take effect in target organ. However, ageing-dependent changes in terms of the distribution of GnRH neurons in the brain and LHR expression in the acyclic ovary have not been fully understood yet. Therefore, we comparatively investigated those ageing-dependent changes using young (1-5 months), middle (11-14 months) and old (21-27 months) aged female mice. Whereas a number of GnRH positive fibers and neurons with monopolar or bipolar morphology were abundantly observed in the brain of the young and middle aged mice, a few GnRH positive neurons with multiple dendrites were observed in the old aged mice. In addition, acyclic ovary without repeated development and degeneration of the follicles was shown in the old aged mice than others. LHR expression was localized in theca cells, granulosa cell, corpora lutea and atretic follicle in the ovaries from young and middle aged mice, in contrast, old aged mice had few positive LHR expression on the follicles due to acyclic ovary. However, the whole protein level of LHR was higher in the ovary of old aged mice than others. These results are expected to be used as an important basis on the relationship between GnRH and LHR in old aged animals as well as in further research for reproduction failure.
A saccular aneurysm is a localized, pouch arterial abnormality, Varous kinds of experimental saccular aneurysm models have been developed to treat aneurysms, and more effective ways to create aneurysm model is also needed. This study aims to compare aneurysm models induced by either porcine pancreatic elastase or papain from papaya latex. Eleven New Zealand white rabbits were divided into three treatment groups: normal saline (n=3), papain (n=4), and elastase (n=4). The right common carotid artery was selected as the aneurysmal site, and the respective substance was incubated for 20 minutes. No neurological signs occurred after operation. Hematoxylin-eosin (H&E) staining and modified elastic trichrome stain were performed 2 weeks after the procedure for pathological analysis. Histological findings for the control group showed normal vascular wall structure, normal elastic fiber, and no signs of inflammation. In samples of the papain group, the vascular walls were damaged and the endothelium was detached. Most of the elastic fibers were destructed. All samples of the papain group showed elastic fragmentation. In the elastase group, all samples showed severe inflammation and destruction of the vascular structure. There was also an elastase-induced sterile abscess. These findings indicate that elastase does not induce stable aneurysms at a dose of 1 mg because of excessive inflammation and destruction of the vascular structure. Elastase induces inflammation and apoptosis which results in the vascular wall to weaken before an aneurysm is formed. Papain at the dose of 1 mg, in contrast, seems to be a suitable candidate for enzymatic aneurysm models in the rabbit.
The trans-differentiation potential of mesenchymal stem cells (MSCs) is employed, but there is little understanding of the cell source-dependent trans-differentiation potential of MSCs into corneal epithelial cells. In the present study, we induced trans-differentiation of MSCs derived from umbilical cord matrix (UCM-MSCs) and from dental tissue (D-MSCs), and we comparatively evaluated the in vitro trans-differentiation properties of both MSCs into corneal epithelial-like cells. Specific cell surface markers of MSC (CD44, CD73, CD90, and CD105) were detected in both UCM-MSCs and D-MSCs, but MHCII and CD119 were significantly lower (P < 0.05) in UCM-MSCs than in D-MSCs. In UCM-MSCs, not only expression levels of Oct3/4 and Nanog but also proliferation ability were significantly higher (P < 0.05) than in D-MSCs. In vitro differentiation abilities into adipocytes and osteocytes were confirmed for both MSCs. UCM-MSCs and D-MSCs were successfully trans-differentiated into corneal epithelial cells, and expression of lineage-specific markers (Cytokeratin-3, -8, and -12) were confirmed in both MSCs using immunofluorescence staining and qRT-PCR analysis. In particular, the differentiation capacity of UCM-MSCs into corneal epithelial cells was significantly higher (P < 0.05) than that of D-MSCs. In conclusion, UCM-MSCs have higher differentiation potential into corneal epithelial-like cells and have lower expression of CD119 and MHC class II than D-MSCs, which makes them a better source for the treatment of corneal opacity.
The cryopreservation has been extensively applied in many cells including spermatozoa (semen) during past several decades. Especially, the canine spermatozoa cryopreservation has contributed on generation of progeny of rare/genetically valuable dog breeds, genome resource banking and transportation of male germplasm at a distant place. However, severe and irreversible damages to the spermatozoa during cryopreservation procedures such as the thermal shock (cold shock), formation of intracellular ice crystals, osmotic shock, stress of cryoprotectants and generator of reactive oxygen species (ROS) have been addressed. According as a number of researches have been conducted to overcome these problems and to advance cryopreservation technique, several analytical methods have been employed to evaluate the quality of the fresh or cryopreserved canine spermatozoa in regards to the motility, morphology, integrity of membrane and DNA, mitochondrial activity, ROS generation, binding affinity to oocytes, in vitro fertilization potential and fertility potential by artificial insemination. Because the study designs with certain application of analytical methods are selective and varied depending on each experimental objective and laboratory condition, it is necessary to establish the normal reference data of the fresh or cryopreserved canine spermatozoa for each analytical method to monitor experimental procedure, to translate raw data and to discuss results. Here, we reviewed the recent articles to introduce various analytical methods for the canine spermatozoa as well as to establish the normal reference data for each analytical method in the fresh or cryopreserved canine spermatozoa, based on the results of the previous articles. We hope that this review contributes to the advancement of cryobiology in canine spermatozoa.
In this study, the CFD analysis was performed by changing the geometry of coil-tube diameter ratio, coil winding number, coil pitch, and cross section of the tube to investigate the heat flow characteristics of forced convection in a helical coil-tube heat exchanger using RSM (Reynolds Stress Model). As a result, the secondary flow was developed in the tube caused by the influence of centrifugal force. It improved the heat transfer on the outer side of the tube, but on the inner side was not performed well. And the temperature rose locally in the tube region. Also the pressure drop in the tube was proportional to the diameter ratio of the coil-tube and the inlet velocity, and it was found that pressure drop and friction factor were inversely proportional. When the coil winding number and coil pitch were increased, it affected heat transfer in the low speed range of 0.1 ~ 0.2 m/s, but did not affect the flow condition after this range.
Miniature pig (minipig) has been considered as an important laboratory animal in the developmental biotechnology researches with respect to xenotransplantation, stem cell, somatic cell nuclear transfer and embryo transfer. Given that the laboratory minipigs are normally housed at an indoor facility, they pass the time with lying or sleeping unless it is feeding time. Therefore, it is necessary to provide environmental enrichments to satisfy their innate needs and to lessen atypical behaviors caused by stress, on the purpose of welfare. We quantitatively investigated the type of preferable enrichment for the laboratory minipigs as well as its effect on their daily life. They presented a great interest to the pliable pail but a rapid loss of attraction to non-preferable enrichments. When the daily life of the single housed minipigs was quantified based on duration of playing or resting, they were more actively engaged in lively activities in the presence of enrichments. In addition, the provision of enrichments could effectively alleviate the conflicts during group housing when new pen mate was introduced, resulting in reduction of wound cases. We believe the considerations of animal welfare are essential to the conduct of better research because animals in the non-stressful environment will be more physiologically stable and provide more reliable results in the animal experiments.
ZnO micro/nanocrystals with different morphologies were synthesized by thermal evaporation of various zinc source materials in an air atmosphere. Zinc acetate, zinc carbonate and zinc iodide were used as the source materials. No catalysts or substrates were used in the synthesis of the ZnO crystals. The scanning electron microscope(SEM) image showed that the morphology of ZnO crystals was strongly dependent on the source materials, which suggests that source material is one of the key factors in controlling the morphology of the obtained ZnO crystals. Tetrapods, nanogranular shaped crystals, spherical particles and crayon-shaped crystals were obtained using different source materials. The X-ray diffraction(XRD) pattern revealed that the all the ZnO crystals had hexagonal wurtzite crystalline structures. An ultraviolet emission was observed in the cathodoluminescence spectrum of the ZnO crystals prepared via thermal evaporation of Zn powder. However, a strong green emission centered at around 500 nm was observed in the cathodoluminescence spectra of the ZnO crystals prepared using zinc salts as the source materials.
The estrogen-mediated effect of mesenchymal stem cells (MSCs) is a highly critical factor for the clinical application of MSCs. However, the present study is conducted on MSCs derived from adult donors, which have different physiological status with steroid hormonal changes. Therefore, we explores the important role of 17β-estradiol (E2) in MSCs derived from female and male newborn piglets (NF- and NM-pBMSCs), which are non-sexually matured donors with steroid hormones. The results revealed that in vitro treatment of MSCs with E2 improved cell proliferation, but the rates varied according to the gender of the newborn donors. Following in vitro treatment of newborn MSCs with E2, mRNA levels of Oct3/4 and Sox2 increased in both genders of MSCs and they may be correlated with both estrogen receptor α (ERα) and ERβ in NF-pBMSCs, but NM-pBMSCs were only correlated with ERα. Moreover, E2-treated NF-pBMSCs decreased in β-galactosidase activity but no influence on NM-pBMSCs. In E2-mediated differentiation capacity, E2 induced an increase in the osteogenic and chondrogenic abilities of both pBMSCs, but adipogenic ability may increased only in NF-pBMSCs. These results demonstrate that E2 could affect both genders of newborn donor-derived MSCs, but the regulatory role of E2 varies depending on gender-dependent characteristics even though the original newborn donors had not been affected by functional steroid hormones.
Productivity is the essential comparative advantage in high tech industry company in 21 century. These company endless endeavor for low cost production. Low cost production can be led by low facility operation cost and low labor cost. But reducing facility operation cost arise much investment. Thus many high tech company drive reduction of labor cost. These article suggest model for reducing labor cost and prove a effect by example of some company.
Noodles have been a part of our diet for a long time. In Asia, white-salted, Cantonese and instant fried types of noodles are widely consumed. White-salted noodles, also called Udon noodles, are consumed as wet or dried form. White-salted noodles are deeply favored in Korea and Japan and more consumption of Cantonese noodles are observed in other Asian countries. The quality attributes of white-salted noodles are predominantly dependant by wheat flour components, such as starch, protein and pigments, as wheat flour, water and salt are main raw materials of white-salted noodles. In several studies, the ratio between amylose and amylopectin is a key determinant of textural properties of white-salted noodles; hardness of white-salted noodles did have a significant (p<0.05) increase when amylose content in wheat flour was increased. The textural properties of white-salted noodles was not affected much by the protein content, especially protein content of flour was in the range of 10% ~ 13%. It seems that starch plays more important role than protein in the textural properties of white-salted noodles. Carotenoids and flavonoids pigment are major contributors of color of white-salted noodles.
본 연구에서는 농축유청단백질을 이용하여 내부젤화 방법으로 나노크기(<~200 nm)의 W1/O/W2 다중 에멀젼을 제조하고, 제조 공정요인(가교제인 CaCl2 농도, 초음파처리, 유화제)에 따른 나노다중에멀젼의 형태학적, 물리화학적(입자크기, 다분산지수, 제타전위) 특성 평가와 모델 유식품(우유, 요구르트, 치즈)을 이용한 저장 안정성을 연구하였다. 나노다중에멀젼의 형태학적 특성은 투과전자현미경을 이용하여 관찰하였으며 물리화학적 특성 및 유식품 저장 안정성 평가는 입도분석기를 이용하여 수행되었다. 실험 결과 가교제인 CaCl2을 첨가함에 따라 다중에멀젼의 크기가 유의적으로(p<0.05) 감소하였으며, 이용된 CaCl2 모든 농도(0, 4, 6, 8 mM)에서 음전하를 지닌 다중에멀젼은 다분산지수 0.2 이하의 균질의 입자 분포를 지니고 있음을 알 수 있었다. 또한 투과전자현미경을 이용하여 관찰한 결과, ~ 180 nm 크기의 내부에 오일상이 포함된 구형의 나노다중에멀젼이 성공적으로 제조되었음을 확인하였다. 초음파 처리시 다중에멀젼 크기는 유의적으로(p<0.05) 감소하였으며, 다분산지수 0.2 이하의 나노다중에멀젼이 생성됨을 확인하였다. 또한 수상 내 유화제 첨가 시 입자크기가 유의적으로(p<0.05) 감소하였고, 다분산지수 0.2 이하의 나노다중에멀젼이 생성됨을 확인하였다. 모델 유식품 저장 환경에서의 안정성 평가 결과 14일 동안 나노다중에멀젼은 물리화학적 안정성을 유지하였으며, 결과적으로 농축유청단백질 나노다중에멀젼은 유식품 적용성이 뛰어남을 확인하였다.