한국원자력연구소 내의 연구용 원자로(TRIGA II, III) 해체 시 발생한 방사성 알루미늄 해체 폐기물의 감용 및 제염 특성을 평가하기 위해 아크로에서 알루미늄의 용융 특성 및 방사성 핵종의 분배 특성에 대한 연구를 수행하였다. 알루미늄 폐기물은 흑연전극(graphite electrode)을 이용한 전기아크로에서 4가지 종류의 플럭스를 함께 첨가하여 용융시켰다. 또한 알루미늄의 용융 시 방사성 핵종의 분배 특성을 고찰하기 위해 알루미늄 시편에 방사성 모의 핵종인 코발트, 세슘, 스트론튬의 화합물을 오염시킨 후 혹연도가니에 넣어 알루미늄 용융실험을 수행하였다. 전기아크로에서 알루미늄의 용융실험을 수행한 결과 플럭스의 종류에 따라 다소 차이는 있으나 플럭스의 첨가에 의해 알루미늄 용융체의 유동성이 증가됨을 확인할 수 있었다. 아크 용융에 의해 생성된 슬래그의 발생량은 플럭스 A와 B를 첨가한 알루미늄 용융실험에 비해 플럭스 C와 D를 첨가한 실험에서 상대적으로 많은 양이 생성됨을 알 수 있었으며, 첨가된 플럭스의 양이 증가할수록 이에 비례하여 슬래그의 발생량이 증가함을 알 수 있었다. 슬래그(slag)의 XRD 분석을 통해 방사성 핵종이 주괴에서 슬래그 상으로 이동한 후 슬래그를 구성하고 있는 산화알루미늄과 결합하여 안정한 화합물로 슬래그 상에 포집됨을 알 수 있었다. 알루미늄 폐기물의 용융시 Co의 분배율은 플럭스를 첨가한 경우에 보다 높은 제염계수를 나타냈으며, 모든 플럭스에서 40% 이상의 제염 효과를 나타내었다. 반면에 휘발성 핵종인 Cs과 Sr은 주괴로부터 98% 이상이 제거되어 대부분이 슬래그상과 분진으로 이동되는 특성을 확인할 수 있었다.
원자력 시설의 해체 시 발생되는 다양한 종류의 폐기물 중에서 배관류를 재활용하거나 처분하기 위해서는 배관 내부의 정확한 방사선학적인 오염 특성의 평가가 선행되어야 한다. 그러나 기존의 측정법인 survey-meter를 이용한 오염도의 직접 측정은 배관 내부와 같은 국소지역의 오염 특성을 정확하게 평가할 수 없으며, 간접법을 이용한 표면오염도 측정의 경우도 시료채취의 어려움뿐만 아니라 시료채취 시 작업자의 오염 가능성이 있기 때문에 적용성에 많은 문제점이 있다. 본 연구에서는 Monte Carlo 모사기법을 이용해 직경이 작은 배관 내부의 베타선 오염도를 측정하기 위하여 플라스틱 섬광체를 모사하였으며, 모사 결과에서 베타선 에너지를 효율적으로 측정할 수 있는 최적의 플라스틱 섬광체 두께 및 형상을 도출할 수 있었다. 이 전사모사 결과를 바탕으로 섬광체의 가공 및 배관 내부에서의 검출기 이송 문제를 고려해 검출기를 제작하였으며 그 특성을 평가하였다. 그 결과 배관 내부의 오염도 측정에 적합한 검출기 성능을 확인하였고, 파이프 내부처럼 국소 지역의 방사선학적 오염 특성 평가를 위한 검출기 개발 가능성을 확인하였다.
TRIGA 연구로의 해체 시 발생하는 금속성 폐기물의 용융기술을 확립하기 위한 기초연구로 전기로 내에서 방사성 핵종(Co, Cs, Sr)을 포함한 알루미늄의 용융 시 용융온도, 용융시간 및 플럭스(flux)의 종류가 핵종의 분배 거동에 미치는 영향을 조사하였다. 플럭스의 종류에 따라 다소 차이는 있으나, 플럭스의 첨가로 알루미늄 용융체의 유동성이 증가됨을 확인할 수 있었다 용융 후주괴(ingot) 및 슬래그(slag) 시료의 XRD분석을 통해 핵종이 주괴에서 슬래그 상으로 이동하고 슬래그를 구성하고 있는 산화알루미늄과 결합하여 안정한 화합물을 형성함을 알 수 있었다. 슬래그의 발생량은 용융온도와 용융시간이 증가할수록 증가하는 경향을 보였으며, 증가속도는 플럭스의 종류에 따라 차이를 보였다. 핵종 중 Co는 용융온도가 증가함에 따라 주괴 내 에서는 감소하였으나 슬래그 상에서는 증가하는 경향을 보였으며, 실험조건에 따라 최대 90까지 주괴에서 슬래그로 이동하였다. 휘발성이 강한 Cs과 Sr은 대부분이 슬래그와 분진으로 이동하여 매우 높은 제염계수를 얻을 수 있었다.
Cs 이온에 대해 선택성을 갖는 ferrocyanide-음이온 교환수지를 제조하여 모의 제 염폐액 내에 존재하는 Cs 이온에 대한 흡착실험을 수행하였다. 제조된 이온교환 수지가 citric acid를 주제염제로 하는 제염폐액 내에 존재하는 Cs+ 이온에 대한 흡착능력은 상용 양이온교환수지에 비해 4배 이상 효과적인 것으로 나타났다. 모의 제염폐액과 선택성 이온교환수지를 접촉시킨 후 360분이 경과하면 금속이온에 대한 흡착반웅이 평형에 도달하였다. 본 연구범위에서 Co 이온농도가 필요이상 증가하게 되면 Cs 이온의 흡착율은 감소하였다. 과산화수소와 히드라진을 사용한 선택성 폐 이온교환수지의 재생실험 결과 전기중성화조건을 만족시키기 위해 Cs 이온이 수지로부터 용출됨을 확인하였고 열화없이 재 사용가능성을 확인하였다.
The electrosorption of U(VI) from waste water was carried out by using an activated carbon fiber (ACF) felt electrode in a continuous electrosorption cell. In order to enhance the electrosorption capacity at a lower potential, the ACF was electrochemically modified in an acidic and a basic solution. Pore structure and functional groups of the electrochemically modified ACF were examined, and the effects of the modification conditions were studied for the adsorption of U(VI). Specific surface area of all the ACFs was decreased by this modification. The amount of the acidic functional groups decreased with a basic modification, while the amount increased a lot with an acidic modification. The electrosorption capacity of U(VI) decreased on the acid modified electrode due to the shielding effect of the acidic functional groups. The base modified electrode enhanced the capacity due to a reduction of the acidic functional groups. The electrosorption amount of U(VI) on the base modified electrode at .0.3 V corresponds to that of the as-received ACF electrode at .0.9 V. Such a good adsorption capacity was due to a reduction of the shielding effect and an increase of the hydroxyl ions in the electric double layer on the ACF surface by the application of negative potential.
10년 이상 된 방사능오염 토양에서 동전기적 방법에 의한 Cs과 Co의 제염효율을 높이기 위해 HSO과 시트르산을 첨가제로 사용했다. 동전기 토양복원 컬럼의 방출수 평균속도는 2.0 cm/min이고, 10일 동안 방출된 토양폐액의 부피는 컬럼의 3.6 공극부피다. 10일간 Cs 의 제거효율이 54%에 불과한 반면에, Co는 97%나 제거되었다. 이것은 Cs의 흡착평형계수가 Co 보다 크기 때문이라고 생각된다. 본 연구에서 제시한 수학적 모델에 의한 컬럼 잔류 오염도는 실험 오차 범위에서 실험결과와 잘 일치하였다.