Titanium and its alloys are useful for implant materials. In this study, porous Ti-Nb-Zr biomaterials were successfully synthesized by powder metallurgy using a NH4HCO3 as space holder and TiH2 as foaming agent. Consolidation of powder was accomplished by spark plasma sintering process(SPS) at 850˚C under 30 MPa condition. The effect of high energy milling time on pore size and distribution in Ti-Nb-Zr alloys with space holder(NH4HCO3) was investigated by optical microscope(OM), scanning electron microscope(SEM) & energy dispersive spectroscopy(EDS) and X-ray diffraction(XRD). Microstructure observation revealed that, a lot of pores were uniformly distributed in the Ti-Nb-Zr alloys as size of about 30-100μm using mixed powder and milled powders. In addition, the pore ratio was found to be about 5-20% by image analysis, using an image analyzer(Image Pro Plus). Furthermore, the physical properties of specimens were improved with increasing milling time as results of hardness, relative density, compressive strength and Young's modulus. Particularly Young's modulus of the sintered alloy using 4h milled powder reached 52 GPa which is similar to bone elastic modulus.
To improve coating ability and the life of the coating, Ti based composite materials with hydroxyapatite(HA) should be developed. The raw materials of Ti-26wt%, Nb-1wt%, and Si with 10wt% HA were mixed for 24 h by a mixing machine and milled for 1 h to 6 h by planetary mechanical ball milling. Ti-26%Nb-1%Si-(10%HA) composites, composed of nontoxic elements, were fabricated successfully by spark plasma sintering(SPS) at 1000˚C under 70MPa. The relative density of the sintered Ti-Nb-Si-HA composites using the 24 h mixed powder, and the 6 h milled powder, was 91% and 97 %, respectively. The effects of HA contents and milling time on microstructure and mechanical properties were investigated by SEM and hardness tester, respectively. The Vickers hardness of the composites increased with increasing milling time and higher HA content. The Young's modulus of the sintered Ti-26%Nb-1%Si-10%HA composite using the 6 h-milled powder was 55.6 GPa, as obtained by compression test. Corrosion resistance of the Ti-26wt%Nb-1wt%Si composite was increased by milling and by the addition of 10wt%HA. Wear resistance was improved with increasing milling time. Biocompatibility of the Ti-Nb-Si alloys was improved by the addition of HA.
Ti-6Al-4V ELI (Extra Low Interstitial) alloy have been widely used as alternative to bone due to its excellent biocompatibility, although it still has many problems such as high elastic modulus and toxicity. Therefore, biomaterials with low elastic modulus and non toxic characteristics have to be developed. A novel β Ti-35wt%Nb-7wt%Zr-Calcium pyrophosphate (CPP) composite that is a biocompatible alloy without elemental Al or V was fabricated by spark plasma sintering (SPS) at 1000˚C under 70 MPa using high energy mechanical milled (HEMM) powder. The microstructure and phases of the milled powders and the sintered specimens were studied using SEM, TEM, and XRD. Ti-35wt%Nb-7wt%Zr alloy was transformed from α phase to β phase in the 4h-milled powder by sintering. The sintered specimen using the 4h-milled powder showed that all the elements were distributed very homogeneously and had higher density and hardness. β Ti alloy-CPP composite, which has nanometer particles, was fabricated by SPS using HEMMed powder. During the sintering process, CaTiO3, TixOy, and CaO were formed because of the reaction between Ti and CPP. The Vickers hardness of the composites increases with the increase of the milling time and the addition of CPP. The biocompatibility of the Ti-Nb-Zr alloys was improved by addition of CPP.
High-energy mechanical milling (HEMM) and sintering into Al-Mg alloy melt were employed tofabricate an Al alloy matrix composite reinforced with submicron and micron sized Al2O3 particles. Al-basedmetal matrix composite (MMC) reinforced with submicron and micron sized Al2O3 particles was successfullyfabricated by sintering at 1000oC for 2h into Al-Mg alloy melt, which used high energy mechanical milled Al-SiO2-CuO-ZnO composite powders. Submicron/micron-sized Al2O3 particles and eutectic Si were formed by in situdisplacement reaction between Al, SiO2, CuO, and ZnO during sintering for 2h into Al-Mg alloy melt and werehomogeneously distributed in the Al-Si-(Zn, Cu) matrix. The refined grains and homogeneously distributedsubmicron/micron-sized Al2O3 particles had good interfacial adhesive, which gives good wear resistance withhigher hardness.
Al-42wt%Nb powder was prepared by high-energy mechanical milling(HEMM). The particle size, phase transformation and microstructure of the as-milled powder were investigated by particle size distribution (PSD) analyzer, scanning electron microscopy (SEM), X-ray diffractometery (XRD), transmission electron microscopy (TEM)and differential thermal analysis (DTA). The milled powders were heated to a sintering temperature at 1000C with under vaccum with vaccum tube furnace. Microstructural examination of sintered Ti-42wt%Nb alloy using 4h-milled powder showed Ti-rich phases (α-Ti) which are fine and homogeneously distributed in the matrix (Nb-rich phase: β-Ti). The sintered Ti-42wt%Nb alloy with milled powder showed higher hardness. The microstructure of the as quenched specimens fabricated by sintering using mixed and milled powder almost are same, but the hardness of as quenched specimen fabricated by using mixed powder increased due to solution hardening of Nb in Ti matrix. The aging effect of these specimens on microstructural change and hardening is not prominent.