The Stockholm Convention was adopted in Sweden in 2001 to protect human health and the environment, including Persistent Organic Pollutants Rotors, such as toxic and bioaccumulative. Currently, there are 28 kinds of materials. This prohibits and limits the production, use, and manufacture of the product. Korea is a party to the Convention and it is necessary to prepare management and treatment plan to cope with POPs trends. In the text, we have discussed HCBD materials. HCBD belongs to halogenated aliphatic unsaturated hydrocarbons. It is a toxic, organic mixture of bioaccumulation. A study on the treatment of waste containing HCBD substance, We decided to treat the waste containing HCBD thermally. So six samples were selected. Waste water treatment sludge, rubber plate, insecticide, tarpaulin, tire rubber, mixed sample. The tire rubber injected HCBD as a technical sample. HCBD analysis showed that 59.345 ~ 18,238.355 ug/kg was detected. For the thermal treatment, we analyzed element. As a result of thermogravimetric analysis, the weight change due to the decomposition of the material started at 200℃. The material decomposition was completed within 800℃. The thermal treatment was performed on a Lab-scale (1kg/hr). After exhaust gas analysis result, HCBD was detected at 0.01 to 0.09 ug/kg. The decomposition rate is estimated to be 99.848 ~ 99.999%. As a result of dioxin analysis in the exhaust gas, the highest concentration was found in the tarpaulins and the emission limit was exceeded. The concentrations of Cd, Pb, Cr, Cu, Ni and Zn in the residues were very low. Considering the decomposition rate of HCBD containing wastes, incineration treatment at 2 ton/hr or more is considered to be possible. And unintentional persistent organic pollutants such as dioxins in the exhaust gas. Therefore, it is considered safe to operate the incineration temperature at more than 1100℃.
국가별 환경, 정채 흐름에 따라 상이하게 적용되어온 폐기물 에너지화 기술은 도시고형폐기물을 비롯한 폐자원을 증기, 열, 전력 등으로 전환하는 기술을 의미한다. 국내 「신재생에너지 개발・이용・보급촉진법」에 의거하여 사업장에서 폐기물을 변환시켜 생산된 연료 및 소각 열에너지를 신재생에너지로 정의하고 있으며, 「자원순환기본법」의 소각처분부담금 감면을 위한 에너지 회수율 증진을 목적으로 폐기물 에너지화 기술이 주목을 받고 있다. 폐기물 에너지화 기술 중 열적처리의 시장 규모는 연간 190만 달러, 연평균 4.3%의 성장세를 보이고 있으나, 선진국 대비 국내 폐기물 에너지화 기술력은 50% 이하의 낮은 수준을 보유하고 있는 실정이다. 또한 국내 생활폐기물 소각시설의 평균 증기발전 효율이 10% 정도로 매우 낮으며, 사업장폐기물 소각시설은 주로 발전 보다 증기의 직접적 이용에 편향된 경향을 보이고 있다. 따라서 본 연구에서는 국내 사업장폐기물 소각시설 공정에 요소기술 적용 시 에너지 절감량을 열정산법에 따라 산정하여 에너지 고효율화 및 온실가스 감축 효과를 분석하고자 하였다. 소각시설에 적용한 요소기술은 증기 회수 및 활용을 중점으로 ①열 회수 능력강화(저온이코노마이저, 낮은 공기비 연소), ②증기의 효율적 이용(저온촉매탈질, 고효율 건식 배기가스 처리, 백연저감 미적용 또는 가동 중지, 배수폐쇄 시스템 미적용), ③증기터빈 시스템의 효율 향상(고온고압 보일러)으로 구분하여 결과를 정리하였다. 에너지 절감 및 온실가스 감축량 산정은 요소기술 적용 시 추가적으로 회수할 수 있는 증기량을 기준으로 보일러 배기가스량, 폐기물 저위발열량, 각 요소기술 변화 요인(과잉공기비, 출구온도 등), 국가고유 전력배출계수를 바탕으로 산정하였다.
To achieve energy efficiency improvement is used to lower temperature for emission gas at catalyst inlet, or to reduce/stop using steam to reheat emission gas. Saved energy from this process can be used as power source in order to increase generation efficiency. Dry emission gas treatment, on the other hand, is the technology to increase generation efficiency by using highly efficient desalination materials including highly-responsive slaked lime and sodium type chemicals in order to comply with air pollution standards and reduce used steam volume for reheating emission gas. If dry emission gas is available, reheating is possible only with the temperature of 45℃ in order to expect generation efficiency by reducing steam volume for reheating. Retention energy of emission gas from combustion is calculated by emission gas multiplied by specific heat and temperature. In order to obtain more heat recovery from combustion emission gas, it is necessary to reduce not only exothermic loss from boiler facilities but emission calorie of emission gas coming out of boiler facilities. In order to reduce emission calorie of emission gas, it is efficient to realize temperature lowering for the emission gas temperature from the exit of heat recovery facility and reduce emission gas volume. When applying low temperature catalysts, the energy saving features from 0.03% to 2.52% (average 1.28%). When increasing the excess air ratio to 2.0, generation efficiency decreases by 0.41%. When the inlet temperature of the catalyst bed was changed from 210℃ to 180℃, greenhouse gas reduction results were 47.4, 94.8, 118.5, 142.2 thousand tons-CO2/y, CH4 was calculated to be 550.0, 1100.1, 1375.1, 1650.1 kg-CH4/y, and N2O was 275.0, 550.0, 687.6, 825.1 kg-N2O/y. In the case of high efficiency dry flue gas treatment, reduction of greenhouse gases by the change of temperature 120~160℃ and exhaust gas 5,000 ~ 6,500 ㎥/ton is possible with a minimum of 355,461 ton/y of CO2 and minimum 4,125 tons of CH4/y to a maximum of 6,325 ton/y and N2O to a minimum of 2,045 kg/y to a maximum of 3,135 kg/y.
Depending on the steam pressure and temperature balance, it is possible to increase the power generation efficiency of the steam turbine by increasing the heat loss of the turbine by increasing the temperature and pressure. As the high temperature and high pressure increase, the boiler main steam amount is reduced by about 10%, but the increase rate of the heat drop is larger than the decrease rate of the steam flow rate, leading to improvement of power generation efficiency. Utilizing the US Department of Energy Steam Turbine Calculator, we calculated the electricity produced by steam temperature and pressure changes. In this study, the steam temperature was increased from 50℃ to 500℃ at the steam temperature of 20 kg/cm²×300℃, and increased by 10 kg/cm² at the pressure of 20 kg/cm² at the pressure of 60 kg/cm² to investigate the changes in electricity production. Electricity production increased with increasing temperature and pressure. The electricity production was increased by 40.11% at 40 kg/cm²×400℃ and 75.56% at 60 kg/cm²×500℃ compared to the standard condition of 20 kg/cm²×300℃ for comparison.
Energy can be reduced by reducing the exhaust gas temperature at the catalyst inlet and reducing or not using the amount of steam to reheat the exhaust gas. At this time, it is a method to improve the power generation efficiency by using the saved energy for power generation. When the exhaust gas temperature at the inlet of the catalytic reaction tower is operated at about 210℃, it is necessary to increase the temperature of the flue gas downstream of the bag filter at 165℃ to 45℃ to 210℃ required for the catalytic reaction. In the case of low temperature catalyst application, the temperature required for the catalytic reaction tower may be 185℃ and the temperature may be raised only 20℃. Therefore, the amount of steam for heating can be reduced. If the exhaust gas temperature of the bag filter inlet can be increased to 190℃, it can be combined with the low-temperature catalyst to reduce the energy consumed by removing exhaust gas ash. On the other hand, since the high-pressure steam is used as the heat source for reheating the exhaust gas, the reheating temperature is limited. According to such conditions, the exhaust gas temperature at the inlet of the catalytic reaction tower is often designed at about 200 to 220℃.
Even if the amount of exhaust gas is the same, it is possible to reduce the exhaust gas exit heat at the outlet of the boiler facility by lowering the outlet temperature of the economizer, so that it is possible to increase the heat quantity recovered from the boiler facility. There are many cases where the existing facility adopts 220~250℃ as the design value of the exhaust gas temperature at the exit of the economizer. However, in recent years, there has been a case of cooling and recovering heat to 200℃ or less from the viewpoint of active heat recovery. The amount of combustion exhaust gas is reduced by reducing the amount of combustion air supplied to the incinerator, and the amount of heat exhausted from the boiler facility is reduced, thereby improving the boiler efficiency. The holding energy of the combustion exhaust gas is the product of the exhaust gas amount and the specific heat and the temperature. In order to recover more heat from the combustion exhaust gas, not only the heat loss in the boiler facility is reduced, but also the heat radiated from the boiler facility is reduced. It is effective to reduce the exhaust gas temperature at the outlet of the heat recovery equipment and reduce the amount of exhaust gas in order to reduce the amount of exhaust heat of the exhaust gas. Even if the exhaust gas temperature at the outlet of the economizer is the same, the amount of exhaust gas discharged at the boiler facility outlet is reduced by reducing the amount of exhaust gas, and an increase in the recovered heat quantity at the boiler is expected.
Persistent organic pollutants are highly toxic, stay in the environment for a long time, accumulate in the body according to the food chain, and cause damage not only to the area where they occur but also to other areas beyond the border. Parties to the Convention, as well as Korea, are obliged to carry out various efforts to control, reduce or eliminate sources of POPs in accordance with the national implementation plan. In addition, national efforts to limit the production, distribution and use of persistent organic pollutants and the current state of domestic pollution and emissions should be submitted every five years. A flame retardant is a polymeric material with a property that is easy to burn, and it lowers the ignition point by adding a compound having a large flame retarding effect such as halogen, phosphorus, and a nitrogen metal compound. Among them, chlorine-based flame retardants classified as halogen-based are used for suppressing ignition of combustible organic materials including plastics, furniture, textiles, clothing, and electronic products. It is also used as an alternative to brominated flame retardants, causing mutations in carcinogenic substances, hormone destruction, and nervous system damage. In the case of waste containing chlorine-based flame retardants in Korea, the methods and standards for disposal of waste are not specified. The highest SCCP values were 4,253.09 mg/kg for polyurethane foam, 628.29 mg/kg for mobile phone case and 341.91 mg/kg for flame retardant rubber sheet. In the case of car seats no SCCPs were detected, and TCEP was detected at 512. 66 mg/kg, exceeding the EU limit of 5 mg/kg. However, other chlorinated flame retardants TDCP and TDCPP were not detected in all samples.
Annex A and Annex B of the Stockholm Convention define POPs as unintentional releases to Annex C, as well as organochlorine pesticides, polychlorinated biphenyls and hexachlorobenzen which are intentionally produced and used. These pesticides are very stable in the atmosphere due to insecticides, fungicides, herbicides, etc., and are likely to accumulate in living organisms due to residues in crops. There are 15 substances listed in POPs. These materials are widely used due to their high chemical stability, low solubility in water, high volatility, strong insecticidal effect and relatively low production costs. Aldrin-containing pesticides are known to have a combustion method for incineration in a chemical incinerator equipped with a reheat-burner device and a gas scrubber, and a solidification isolation method for solidifying and filling with cement mixed with a combustible material in waste treatment. In the case of solid-phase pesticides, HCB was 421.8 ng/g, Endosolfan-2 73.044 ng/g, PeCB 53.972 ng/g and Endosolfan-1 43.649 ng/g. In the case of liquid pesticides, HCB concentration was the highest at 167.489 ng/g similar to that of the solid phase, followed by PeCB at 23.462 ng/g. B-HCH, g-HCH, d-HCH and the like were detected as a small amount of other substances. It is judged that it is not necessary to set separate operating conditions or preventive facility standards since the material is decomposed sufficiently at 850℃ or more. However, considering the possibility of dioxin or unintentional persistent organic pollutants, it is considered appropriate to operate at above 1,100℃.
Elemental analysis, calorific value, etc. were measured to obtain basic information such as decomposition temperature and required oxygen amount for thermal treatment of waste containing chlorine-based flame retardant. Moisture, flammability and ash content of polyurethane foam were high in water, flammable rubber sheet in case of ash and flame retardant rubber sheet in case of ash. As a result of thermogravimetric analysis, the weight change in the range of 300 ~ 600 ℃ was large. The content of chlorinated flame retardant agent was analyzed to be higher than that of polyurethane foam (4,253.09 mg/kg), cell phone case (cloth, leather) 628.29 mg/kg and flame retardant rubber sheet 341.91 mg/kg. Chlorinated flame retardant materials, TDCP and TDCPP, were not detected in all samples. As a result of the decomposition tests for chlorine-based flame retardants at 850 ℃ and 1,100 ℃, chlorine-based flame retardant components were not detected in exhaust gas at all at 1,100 ℃ as well as at 850 ℃ in all samples including mobile phone cases, flame retardant rubber sheets and car seats. As a result of calculating the conversion rate for total chlorine value, it showed more than 99% even at 850 ℃ as well as at 1,100 ℃. Considering the decomposition rate in laboratory experiments of chlorine-based flame retardant-containing wastes, it is considered possible to incinerate at a scale of 2 ton/hour or more, which is the existing incineration facility. It is judged that it is not necessary to set separate operating conditions or preventive facility standards since the material is decomposed sufficiently at 850 ℃ or more. However, considering the possibility of dioxin or unintentional persistent organic pollutants, it is considered appropriate to operate at above 1,100 ℃.
As a result of analyzing the contents of organic chlorine pesticide-containing wastes, HCB 421.8 ng/g, Endosolfan- 2 73.044 ng/g, PeCB 53.972 ng/g, Endosolphan-1 43.649 ng/g respectively. In the case of liquid pesticides, the HCB concentration was the highest at 167.489 ng/g, similar to that of the solid phase, followed by PeCB at 23.462 ng/g. As a result of decomposition experiments on total OCPs among the pesticide liquid and solid phase components, initial concentrations were 597.384 ng/L for liquid pesticides and 198.176 ng/L for solid pesticides. However, the final effluent gas after decomposition showed a decomposition rate of more than 99.99% at a minimum of 0.005 ng/L and a maximum of 0.055 ng/L. Degradation test results for 25 species of OCPs such as PeCB, HCB, and Endosolfan for pesticide solid phase and liquid phase at reaction temperatures of 850℃ and 1,100℃. Of the 25 OCPs in the exhaust gas, trace amounts of PeCB and HCB were detected in the range of 0.006 to 1.025 ng/L at 1,100 ℃ and 850 ℃, and 23 OCPs were not detected. In the case of pesticides, the method of high temperature incineration and high temperature melting is proposed as the designated waste, but detailed methods of treatment conditions such as incineration conditions are not presented. Organochlorine pesticides were decomposed smoothly at 850 ℃ as well as incineration temperature of 1,100 ℃. However, since the dioxin concentration in exhaust gas exceeds 850 ℃, it is safe to operate at more than 1,100 ℃ in order to prevent the possibility of dioxin in advance.
WtE of MSW plays a crucial role in renewable energy production in Korea. Municipal solid waste (MSW) is an important energy resource for combined heat and power (CHP) production. This study investigated an increasing method to the power generation efficiency by MSW to energy (WtE) plants in South Korea and discussed the issues related to energy efficiency improvement. To achieve energy efficiency improvement is used to lower temperature for emission gas at catalyst inlet, or to reduce/stop using steam to reheat emission gas. Saved energy from this process can be used as power source in order to increase generation efficiency. It is possible to increase denitrification efficiency by maintaining the temperature of emission gas for catalyst denitrification. The temperature of emission gas of which moisture is increased to saturation point (relative humidity of 100%) at the exit of wet scrubber is between 50 and 60℃. This means there should be reheating of emission gas with the approximate temperature of 150℃. Dry emission gas treatment, on the other hand, is the technology to increase generation efficiency by using highly efficient desalination materials including highly-responsive slaked lime and sodium type chemicals in order to comply with air pollution standards and reduce used steam volume for reheating emission gas. If dry emission gas is available, reheating is possible only with the temperature of 45℃ in order to expect generation efficiency by reducing steam volume for reheating.