In order to solve the problem of improper thrust distribution of each thruster of underwater vehicle, the PSO optimization algorithm is used to solve the problem of thrust distribution. According to the spatial layout of the thruster, the algorithm model of the underwater vehicle propulsion system is established. The thrust input is carried out under the broken line search trajectory, and the simulation verifies the thrust allocation results of the PSO algorithm and the traditional pseudo-inverse method. The simulation results show that compared with the traditional algorithm. First of all, the PSO algorithm can set the physical threshold for each thruster to prevent the thruster from having too much thrust. Secondly, it can ensure that the thruster can turn with a reasonable torque to prevent the robot from drifting due to the large thrust gap. This paper provides a theoretical reference for thrust distribution of underwater salvage robot, and has practical engineering significance.
In recent years, safety recalls have occurred frequently in the biopharmaceutical industry, which affects the health of consumers. This article attempts to use the fsQCA method to draw a conclusion through the study of ESG and its quantification system, as well as the study of data samples related to MES and GMP processes, that is, MES-DPT has a positive impact on process safety management, and GMP-DPT has a positive impact on process safety. Management has a positive and positive impact, and ESG-DPT has a positive and positive impact on process safety management. Finally, this article puts forward suggestions for improving ESG-DPT, MES-DPT, GMP-DPT and the biomedical ESG-DPT model. Future research hopes to further study ESG -DPT model and ESG biomedical industry indicators.