Functional regulation of a specific tissue or organ is controlled by a number of ways, including local cell‐gcell interaction. Of several forms of cell‐gcell junctional complexes, gap junctions are caught a great attention due to a formation of direct linkage between neighboring cells. Gap junctions are consisted of connexin (Cx) isoforms. In the present study, we evaluated expressional profiling of Cx isoforms in the rat initial segment (IS) of the male reproductive tract at different postnatal ages. The presence and expression of 13 Cx isoform mRNAs were determined by semi‐gquantitative real‐gtime PCR analyses. A total of 8 Cx isoform mRNAs were detected in the IS of the male rats during postnatal development. The highest level of Cx30.3 mRNA was found at 5 months of age, while abundance of Cx31 mRNA was the highest at 1 year of age. Expression of Cx31.1 gene was relatively consistent during the postnatal development. Fluctuation of Cx32 and 37 gene expression was observed during the postnatal period. Significant elevation of Cx40 mRNA abundance was detected at 25 days of age and older ages. Expression patterns of Cx43 and 45 genes were similar with the highest level at 2 weeks of age, followed by gradual decreases at older ages. These results indicate differential regulation on expression of Cx isoforms in the rat IS during postnatal development. A complicated regulation of gene expression of Cx isoforms in the IS at different postnatal ages is suggested.
The epididymis in the male reproductive tract is the site where spermatozoa produced from the testis become mature. The epididymis is divided into 4 different segments, initial segment and caput, corpus, and caudal epididymis, depending upon functional and morphological features. Aquaporins (Aqps) are water channel molecules, which are present in the epididymis and play a major role in removal of epididymal water, resulting in creation of microenvironment for sperm maturation and concentration of sperms. Nandrolone decanoate (ND) is a synthetic anabolic-androgenic steroid, which is used to treat clinical diseases and improve physical ability and appearance. Even though it is well determined that the ND causes the male infertility by affecting the testis, little is known the effect of the ND on the epididymis. The present study was focused to examine the effect of ND at different treatment doses and periods on expression of Aqp1 and Aqp9 genes in the epididymis of pubertal rats. Results showed that mRNA expression of Aqp1 and Aqp9 genes among the parts of the epididymis was differentially regulated by ND treatment doses. In addition, treatment periods of ND caused differential expression of Aqp1 and Aqp9 mRNAs among segments of the epididymis. Therefore, it is believed that male infertility induced by ND could be resulted not only from malfunction of the testis but also from aberrant gene expression of Aqp1 and Aqp9 in the epididymis.
Maturation of oocytes is maintained by complex procedures along with follicular genesis and is a critical step for embryonic development. Purine known as an oocyte maturation regulator is present in follicular fluid. In this study, the roles of guanosine as a strong inhibitor of GVBD and a modulator of cyclic GMP concentration in ooyctes were revealed. Denuded immature oocytes were treated with guanosine, and the maturation rates and cGMP concentration of oocytes were measured. GVBD was blocked in a concentration dependent manner by guanosine, but this effect was reversible. However, GVBD was lagged yet not significant by adenosine. Both guanosine and adenosine modified cGMP concentration in oocytes. The characteristic of the guanosine-treated oocyte was significantly higher cGMP compared with the adenosine-treated oocyes at initial time of the maturation. Based these results, guanosine may be a strong and reversible GVBD inhibitor. Although the precise mechanism of guanosine presently is unclear, the results suggest that guanosine may lead the accumulation of cGMP in oocyte cytoplasm, which in turn suppresses GVBD.
Endocrine disruptors have been concerned in toxicology but now challenged as physiological point especially concerned with exposing dose and period. In this study the low-dose chronic administration of di(2-ethylhexyl) phthaltae (DEHP) during reproductive period was examined to evaluate the possible roles. Adult male and female CD-1 mice were exposed to DEHP with drinking water containing 133 g/L and 1,330 ㎍/L DEHP in water according to OECD 433 guide line and sacrificed just after weaning. The weights of uterus and ovary were decreased by drinking of 1,330 ㎍/L DEHP water. There was not adverse effects on either accumulated mating rate and mating rate depend on estrus stage, pregnancy duration, and sex ration at birth. However, the accumulated rate of successful delivery and litter size were significantly high at 1,330 ㎍/L DEHP water. The number of epididymal sperm was significantly increased by drinking of 1,330 ㎍/L DEHP water. In addition, the number of follicles (primary, secondary, tertiary) were more many than control at 1,330 ㎍/L DEHP water drunk mother. Though further studies are needed to identify what are the mechanism of DEHP in folliculogenesis and spermatogenesis. From this study we firstly report the effect of low-dose chronic administration of DEHP with drinking could change the ovarian follicle population size and spermatogenesis rate. Put together, those finding is different from previous high-dose effects and suggest the physiological role of DEHP in gonads and uterus.
In the present study, we employed Hershberger assay to determine possible androgenic or antiandrogenic activities of three di-2-ethylhexyl phthalate (DEHP) substitute candidates. The assay was carried out using immature castrated Sprague–Dawley male rats. After 7 days of the surgery, testosterone propionate (TP, 0.4 mg/kg/day) and test materials (low dose, 40 mg/kg/day; high dose, 400 mg/kg/day) were administered for 10 consecutive days by subcutaneous (s.c.) injection and oral gavage, respectively. Test materials were DEHP, 2-ethylhexyl oleate (IOO), 2-ethylhexyl stearate (IOS) and triethyl 2-acetylcitrate (ATEC). The rats were necropsied, and then the weights of five androgen-dependent tissues [ventral prostate, seminal vesicle, coagulating glands, levator ani-bulbocavernosus (LABC) muscle, paired Cowper’s glands, and glans penis] and four androgen-insensitive tissues (kidney, adrenal glands, spleen and liver) were measured. All test materials including DEHP did not exhibit any androgenic activity in the assay. On the contrary, antiandrogen-like activities were found in all test groups, and the order of the intensity was ATEC < DEHP < ISO < IOO in the five androgen-sensitive tissues. There was no statistical difference between low dose treatment and high dose treatment of all replacement candidate groups. In DEHP groups, high dose treatment exhibited significant weight gains in LABC and Glan Penis. There was no statistical difference in androgen-insensitive tissue measurements. Since the effects of ATEC treatment on the accessory sex organs were much less or not present at all when compared to those of DEHP, ATEC could be a strong candidate to replace DEHP. IOO treatment brought most severe weight reduction in all of androgen-sensitive tissues, so this material should be excluded for further screening of DEHP substitute selection.
Bisphenol-A(BPA) is a member of alkylphenol family, and shows adverse effects including reduced fertility, reproductive tract abnormalities, metabolic disorder, cancer induction, neurotoxicity and immunotoxicity. In the present study, we conducted Hershberger assay to evaluate whether the two candidates to replace BPA have androgenic or antiandrogenic activity. The assay was carried out using immature castrated Sprague–Dawley male rats. After 7 days of the surgery, testosterone propionate (TP, 0.4 mg/kg/day) and test materials (low dose, 40 mg/kg/day; high dose, 400 mg/kg/day) were administered for 10 consecutive days by subcutaneous (s.c.) injection and oral gavage, respectively. Test materials were BPA, isosorbide (ISO) and cyclohexanedimethanol (CHDM). The rats were necropsied, and then the weights of five androgen-dependent tissues [ventral prostate, seminal vesicle, levator ani-bulbocavernosus (LABC) muscle, paired Cowper’s glands, and glans penis] and three androgen-insensitive tissues (kidney, spleen and liver) were measured. All test materials including BPA did not exhibit any androgenic activity in the assay. On the contrary, antiandrogen-like activities were found in all test groups, and the order of the intensity was CHDM > BPA > ISO in the five androgen-sensitive tissues. There was no statistical difference between low dose treatment and high dose treatment of BPA group as well as ISO group. In CHDM group, high dose treatment exhibited most severe weight reduction in all measured tissues. There was no statistical difference in androgen-insensitive tissue measurements, except BPA groups. Since the effects of ISO treatment on the accessory sex organs were much less or not present at all when compared to those of BPA, ISO could be a strong candidate to replace BPA. CHDM treatment brought most severe weight reduction in all of androgen-sensitive tissues, so this material should be excluded for further screening of BPA substitute selection.
The greater horseshoe bat (Rhinolophus ferrumequinum) is distributed throughout Europe, Africa, Australia, and South Asia. It habits mainly in the cave in small groups and forming communities in late spring. It has interesting reproductive behavior because it keeps sperm for a few months in female reproductive tracts and then those sperms attend in fertilization. This breeding pattern is a sperm storage type and belongs to Rhinolophidae or Hipposideridae. The greater horseshoe also habits in Korea. However, the reasons of reproductive behaviors has not much uncovered. In this study the characters of ovary and the levels of steroid hormones were investigated from September to November. The histological, ELISA, and immunohistochemical methods were employed. The pre-ovulatory follicle was detected only at October sample. On the other hand, the blood level of testosterone was not detectable but the levels of 17β-estradiol and progesterone were exist within the detectable range. E2 and P4 levels were peak in October. Besides, the key enzymes for estradiol synthesis, CYP17 and CYP19 were localized in the theca layer and granulosa cells, respectively. October is known as mating time in this species. However, progesterone receptors could not detect at this period. Put together, it is suggested that, the increase of estrogen and the absence of progesterone receptors on preovulatory follicle is the cause of the mating without ovulation. The understanding of the expression regulation in this system will be base of the understanding the anovulation in mammals.
Adipogenesis is a primary energy valancing response in physiological status and critical in embryo development. One of the essential factors for initiation and maintaining of adipogenesis is the composition of extracellular matrix. Previously, we confirmed the effects of diphlorethohydroxycarmalol (DPHC), an extract of Ishige okamurae, on the antiobesity effects and ECM stability in adipose tissue. In vitro model for adipogenesis study, 3T3-L1, a precursor cell type of adipocyte, and the adipose-tissue derived stem cell (ADSC) can be used. Usually the induction period for adipocyte is shorter in 3T3-L1 than in ADSCs. However, so far, the difference of the expression patterns of ECM components in 3T3-L1 and ADSCs, and the effects of DPHC are not much known. We induced differentiation of 3T3-L1 and ADSCs into adipocyte with or without DPHC (0, 0.4, 2, 10, 50 μg/mL) and confirmed the adipogenesis with adipogenic markers (PPAR-γ, LDL). After then, the levels of collagen type 1 alpha 1 (Col1a1), collagen type 3 alpha 1 (Col3a1), collagen type 4 (Col4), collagen type 6 (Col6), Elastin (Eln) and microfibrillar associated protein 5 (Mfap5) were analyzed with real-time RT-PCR. During early adipogenesis of ADSC, the expression levels of Col1, Col3, Col6, and Mfap5 mRNA were decreased but Col4 and Eln mRNA were increased. In the matured adipocyte, the expression levels of Col1, Col3, Col4, Mfap5 mRNA were decreased but not Eln. In the case of early differentiation of 3T3-L1, the expression levels of Col1, Col3, Eln mRNA were decreased but the expression levels of Col6 and Mfap5 were increased. In matured adipocyte of 3T3-L1, the expression levels of Col1, Col3, Eln, Mfap5 mRNA were increase but the expression level of Col6 mRNA was decreased. The expression levels of Col4, Eln mRNA were suppressed by 50 mg/mL DPHC treatment during early adipogenic period of ADSC. On the other hand in 3T3-L1, the expression levels of Col3 and Col6 mRNA were not changed by the DPHC treatment during early induction period. In the matured adipocytes derived from ADSC, Col1 mRNA levels was not decreased by the treatment of 50 mg/mL DPHC. Col4 mRNA levels was not increased by DPHC treatment. In the case of matured adipocytes derived from 3T3-L1, DPHC suppressed the increase of Col1, Col3, Col6 mRNA expression and the expression of Col4 and Eln mRNA was decreased. In summary, these data show that expression levels of each ECM component types are dramatically changed with some common patterns in two cell types, and the treatment of DPHC can modify the expression patterns of some ECM components in each cell types. It is suggested that one of the reason of antiadipogenic effect of DPHC may be the ECM modification.
4-Nonylphenol (NP) is a surfactant that is a well-known and widespread estrogenic endocrine disrupting chemical (EDC). Although it has been known that the affinity of NP to ERs is low, it has been suggested that low-dose NP has toxicity. In the present study, the endocrine disrupting effects on reproduction, and the weight of gonads, epididymis, and uterus were evaluated with the chronic lower-dose NP exposing. This study was designed by following the OECD test guideline 443 and subjected to a complete necropsy. In male, NP had an effect on the weight of the testis and epididymis in both F0 and F1. In females, NP decreased the weight of ovary and uterus in F0 but not in pre-pubertal F1 pubs. Fertility of male and female in F0 or F1 was no related with NP administration. The number of caudal-epididymal sperm by body weight (BW) was not different between groups in both F0 and F1. Besides, the difference of the sperm number between generations was not detected. The number of ovulated oocytes was similar between groups in F0, but significantly decreased in NP 50 group of F1. The litter size and sex ratios of offspring in F1 and F2 were not different. The accumulated mating rate and gestation period were not affected by the NP administration. Those results shows that chronic lower-dose NP administration has an effect of endocrine disruptor on the weight of gonads and epididymis of F0 and F1 but not in reproduction. Based on the results, it is suggested that chronic lower-dose NP exposing causes endocrine disruption in the weight of gonad and epididymis but not in the reproductive ability of next generations.
Intact germinal vesicle (GV) arrest and release are essential for maintaining the fertility of mammals inducing human. Intact germinal vesicle release, maturation of oocytes is maintained by very complex procedures along with folliculogenesis and is a critical step for embryonic development. Cyclic guanosine monophosphate (cGMP) has been suggested a key factor for meiotic arrest but so far its mechanisms are controversy. In this study we examine the effects of cGMP on germinal vesicle breakdown in cumulus-enclosed oocytes and denuded oocytes. Spontaneous maturation was inhibited by a cGMP agonist, 8-Br-cGMP with concentration dependent manners both in cumulus-enclosed oocytes and denuded oocytes. The inhibitory effect was more severe in denuded oocytes than cumulus-enclosed oocytes. The Rp-8-Br-cGMP and Rp-pCPT- 8-Br-cGMP did not severely block GVB compared to 8-Br-cGMP. The spontaneous GVB inhibitory effects were different by the existence of cumulus. Based on them it is suggested that the cumulus modulates the role of cGMP in GV arrest.
Purine metabolism is known factor for nuclear maturation of oocytes through both follicle cells and oocyte itself. However, it is largely unknown the roles of purine metabolism in the oocyte competence for fertilization and early development. In this study, the effects of adenosine in oocyte competence for development were examined using adenosine and its synthetic inhibitors. Adenosine treatment from GV intact stage for 18 hr (fGV) caused of decrease the fertilization rate but of increase the cleavage rate compared from the other stage treatment groups. Hadacidin did not effect on fertilization rate but increased cleavage rate without stage specificity. Adenosine did not block the effects of hadacidin with the exception of fGV group. By the inhibition of purine synthetic pathways the fertilization rate was decreased in the fGV and fGVB groups but increased in the fMII group. Exogenous adenosine caused of decrease fertilization rate in the fGVB group but increase in the fMII group. Cleavage rate was dramatically increased in the adenosine treatment with synthetic inhibitors. It means that the metabolism of purine has stage specific effects on fertilization and cleavage. Exogenous adenosine had only can improve oocyte developmental competence when it treated at GV intact stage. On the other hand, endogenous synthesis in all maturation stage caused of increase the cleavage rate without effects on fertilization. These data suggest that adenosine at GV stage as a paracrine fashion and inhibitions of endogenous adenosine in all stage improve oocyte developmental competence..
Black soybean teata is helpful to preventing obesity through enhancing energy expenditure and suppressing accumulation in mesenteric adipose tissue. The ethanol testa-extract of Cheongja #3 black soybean (ETCBS) is also have similar effects on obesity. So far, it is not clear whether the ethanol testa extract of black soybean can have effect on the characters of subcutaneous adipose stem cells such as proliferation, activity, and adipogenicity. The doubling time was different between subcutaneous adipose-derived stem (ADS) and visceral ADS cells. By the in vitro culture and passage, the doubling time was increased both of them. The shape was not different between groups and their passages were not cause the change of shapes. In the case of visceral ADS cells, the doubling time was 62.3 h or 40.3 h in control or high fat diet administrated mice, respectively, but not modified in subcutaneous ADS cells. ETCBS administration caused of increased the doubling time from 62.3 h to 84.2 h. ETCBS had suppressive effects on the cellular activity of subcutaneous ADS cells. The intensity of Oil Red O staining was very faint in 100 and 200 mg/mL ETCBS treated groups. The amounts of accumulated triglyceride were also significantly low in 100 and 200 mg/mL treated groups. From these results we know that the doubling times and the effects of ETCBS are different by the anatomical origin of ADS cells. It also suggested that ETCBS may suppress the differentiation of subcutaneous ADS cells into the precursors and maturing of adipocytes.
Diphlorethohydroxycarmalol (DPHC) is a known to modulate the expression of extracellular matrix (ECM)
components in 3T3-L1. However, the possible role of DPHC in integument stability during obesity induction is not clear yet.
We evaluated the effects of DPHC on collagen or elastic fiber quantity in integument during obesity induction with high-fat
diet. The dorsal back integument sections were stained with hematoxylin–eosin, Masson trichrome, and Verhoff-Van Gieson.
The intensities of collagen fibers and elastin fibers were analyzed with ImageJ. The number of fibroblasts was counted at
×1,000 fields. The number of fibroblast was increased by obesity induction, but DPHC suppressed it in a concentrationdependent
manner both in lean and obese mice. On the other hand, the intensities of collagen fibers were increased by DPHC
treatment in obese mice groups but not in lean mice groups. The intensities of collagen fibers of obese mice were lower than
that of the lean mice in 0% group. However, the number became similar between lean and obese mice by the treatment of
DPHC. The intensity of elastic fibers was increased in the lean mice with the concentration of DPHC. In the obese mice group, there were increasing patterns but only significant at 10% DPHC group. The intensity of elastic fibers of obese mice was higher than lean mice in 0%, 1%, and 10% groups. Histologically epithelial cells and follicle cells which were diffused nuclear staining forms were increased by DPHC treatment. The results suggest that the activity of integument cells during obesity induction can be modulated by DPHC.
Müllerian inhibiting substance (MIS) is a protein that encoded by MIS gene. It has also been called Müllerian inhibiting factor (MIF) and anti-Müllerian hormone (AMH). Mis expression occurs in ovarian granulose cells of females postpartum, and serves as a molecular biomarker for relative size of the ovarian reserve. In humans, the number of cells in the follicular reserve can be used to evaluate the reproductive function and fertility of female. Pagrus major is typical cultured fish in Korea but there is no clear evidence for their gene identification. However, in many teleost, MIS genes were demonstrated already. Present study aimed to identify the Mis gene in Pagrus major and seasonal difference of its expression. Using conserved sequence of the other known teleost Mis genes, we make conserved primers. Pagrus major’s ovary samples were obtained from the sea rim farm (Geoje, Korea) and kept in RNAlater®Solution or fixed in 4% paraformaldehyde containing 0.16% picric acid. RNA was isolated from kept sample and cDNA was synthesized. The PCR products were performed ligation with TOPO vector and transformation in TOP10 cell and sequenced the Mis mRNA fragment. MIS was localized in the follicle cells. Its mRNA levels were higher in summer than spring or fall. Based on them, it is suggested that MIS can be used to estimate the fertility of this fish.