검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 4

        2.
        2023.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study was conducted to develop a model for predicting the growth of kimchi cabbage using image data and environmental data. Kimchi cabbages of the ‘Cheongmyeong Gaual’ variety were planted three times on July 11th, July 19th, and July 27th at a test field located at Pyeongchang-gun, Gangwon-do (37°37′ N 128°32′ E, 510 elevation), and data on growth, images, and environmental conditions were collected until September 12th. To select key factors for the kimchi cabbage growth prediction model, a correlation analysis was conducted using the collected growth data and meteorological data. The correlation coefficient between fresh weight and growth degree days (GDD) and between fresh weight and integrated solar radiation showed a high correlation coefficient of 0.88. Additionally, fresh weight had significant correlations with height and leaf area of kimchi cabbages, with correlation coefficients of 0.78 and 0.79, respectively. Canopy coverage was selected from the image data and GDD was selected from the environmental data based on references from previous researches. A prediction model for kimchi cabbage of biomass, leaf count, and leaf area was developed by combining GDD, canopy coverage and growth data. Single-factor models, including quadratic, sigmoid, and logistic models, were created and the sigmoid prediction model showed the best explanatory power according to the evaluation results. Developing a multi-factor growth prediction model by combining GDD and canopy coverage resulted in improved determination coefficients of 0.9, 0.95, and 0.89 for biomass, leaf count, and leaf area, respectively, compared to single-factor prediction models. To validate the developed model, validation was conducted and the determination coefficient between measured and predicted fresh weight was 0.91, with an RMSE of 134.2 g, indicating high prediction accuracy. In the past, kimchi cabbage growth prediction was often based on meteorological or image data, which resulted in low predictive accuracy due to the inability to reflect on-site conditions or the heading up of kimchi cabbage. Combining these two prediction methods is expected to enhance the accuracy of crop yield predictions by compensating for the weaknesses of each observation method.
        4,200원
        3.
        2012.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구는 기능성 곡물로 이용되고 있는 아마란스(Amaranthus ssp.)를 어린잎채소 용도로 개발하기 위하여 국내에 보유되어 있는 유전자원에 대한 어린잎 생육특성, 엽 적색도 발현 정도 및 기능성 물질의 함량 변이를 평가함으로써 어린잎채소로서 이용 가능한 유망 아마란스 자원 선발을 위하여 수행되었다. 국내에 수집․보존되어 있는 아마란스 유전자원 262 종에 대하여 색도색차계로 측정한 엽 적색도 발현 정도를 기준으로 전체 자원의 상위 15%에 해당하는 39종을 1차 선발하였다. 1차 선발된 유전자원에 대하여 고온기 및 저온기의 재배를 통하여 어린잎 생육과 유전자원 별 적색소 발현을 검증 평가하여 안정적인 적색 강도를 보이는 고색도 자원을 최종 선발하였다. 아마란스의 엽 적색도는 모든 1차 선발 계통들에 있어서 고온기에 비해 저온기 재배 시 적색도 발현이 우수하였으며 2회의 재배를 통한 평균 적색도 발현 정도를 기준으로 IT199970 등 11종의 자원을 선발하였다. 이들 선발된 유전자원들에 대한 어린잎 생체중 및 총페놀 함량, 총플라보노이드 함량 정보를 제시하였다. 이들 선발 종들은 5개의 아마란스 종에 속하였으며 엽 적색도 발현이 우수하여, 향후 적색 풍미를 더하는 어린잎 샐러드 채소의 소재로서 이용 가능할 것으로 판단된다.
        4,000원
        4.
        2013.09 KCI 등재 서비스 종료(열람 제한)
        Due to climate change, the occurrence of abnormal weather conditions has become more frequent, causing damage to vegetable crops grown in Korea. Hot pepper, Chinese cabbage and radish, the three most popular vegetables in Korea, are produced more in the field than in the greenhouse. It has been a trend that the time for field transplanting of seedlings is getting earlier and earlier as the spring temperatures keep rising. Seedlings transplanted too early in the spring take a longer time to resume the normal growth, because they are exposed to suboptimal temperature conditions. This study examined the influence of air temperature during seedling growth on the time required to reach the first fruit maturity and yield of hot pepper. Seedling plants of ‘Super Manita’ hot pepper was grown in temperatures 2.5℃ and 5.0℃ lower than the optimum temperature (determined by the average of temperatures for the past 5 years). Seedlings were transplanted into round plastic containers (30-cm diam., 45-cm height) and were placed in growth chambers in which the ambient temperature was controlled under natural sunlight. The growth of seedlings under lowered temperatures was reduced compared to the control. The mineral (K, Mg, P, N) concentrations in the leaf tissues were higher when plants were grown with the ambient temperature 2.5℃ lower than the optimum, regardless of changes in other growth parameters. Tissue calcium (Ca) concentration was the highest in the plants grown with optimum temperature. The carbohydrate to nitrogen (C/N) ratio, which was the highest (18.3) in the plants grown with optimum temperature, decreased concomitantly as the ambient temperature was lowered 2.5℃ and 5.0℃. The yield of the early harvested fruits was also reduced as the ambient temperature became lower. The first fruit harvest date for the plants grown with optimum temperature (June 27) was 13 days and 40 days, respectively, earlier than that in plants grown with 2.5℃ (July 10) and 5.0℃ (Aug 6) lower ambient temperatures. The fruit yield per plant for the optimum temperature (724 g) was the greatest compared to those grown with 2.5℃ (446 g) and 5.0℃ (236 g) lower temperatures. The result of this study suggests that the growers should be cautioned not to transplant their hot pepper seedlings too early into the field, since it may delay the time of first harvest eventually reducing total fruit yield.