검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 998

        261.
        2018.05 구독 인증기관·개인회원 무료
        As a surface treatment method of concrete pavement in Korea, transverse tinning has initially been applied to improve drainage and friction at first. Since 2003, in order to reduce the noise of concrete pavement, longitudinal tinning have been studied and proved its superiority. Therefore, Korea Expressway Corporation (KEC) has applied this as surface texturing method in concrete pavement from 2008 to the present. However, the lateral vibration during vehicle running has been continuously raised in the longitudinal tinning section, and lots of efforts have been made to solve this problem. Nonetheless, complaints still occur intermittently in some sections. In this research, three sections in which complaints occur and three test sections were chosen to evaluate characteristics of lateral vibration between tire and longitudinal texturing. Based on the literature survey on the correlation between longitudinal texturing and tire, evaluation of the site and FEM analysis of each road surface were carried out. As a result of the analysis, the lateral vibration occurred most frequently in the random tinning section compared to other sections, and it was relatively few at the other improved tinning of the test section. Further studies on various tire types and timing intervals in the future will provide a standard of longitudinal texturing, which will reduce lateral vibration.
        262.
        2018.05 구독 인증기관·개인회원 무료
        As of 2016, Texas Department of Transportation (TxDOT) manages a total of 16,327 lane miles of Portland cement concrete (PCC) pavement, which represents an important asset to TxDOT. As PCC pavements in Texas built in the 1960s through 1980s have already exceeded or are approaching the end of their design lives, many of these projects will require rehabilitations of some form. Considering the expected steady increase in truck traffic in the future, PCC overlays represent one of the best options for that rehabilitation. Currently, guidelines on PCC pavement overlays on PCC pavement focus on overlay slab thickness determination, but do not provide clear directions on whether existing PCC pavement is a good candidate for concrete overlay, or if the pavement is a good candidate, which overlay type –bonded concrete overlay (BCO) or unbonded concrete overlay (UBCO) –is appropriate. Sound guidelines are needed for the selection of an optimum overlay type, especially for continuously reinforced concrete pavement (CRCP) overlays, which could extend the performance period of structurally deficient PCC pavements in Texas at a reasonable cost. In the present study, the evaluations of PCC overlay performance of various BCO and UBCO projects built in Texas were conducted to develop the BCO design procedures based on mechanistic-empirical principles, and the development of design guidelines for the selection of an optimum overlay type.
        263.
        2018.05 구독 인증기관·개인회원 무료
        The purpose of this study was to investigate the feasibility of converting the results obtained using different rutting performance tests. The correlation between the three simulation tests was analysed to determine the conversion coefficient factor. Two parameters (temperature and speed of simulation testing) were evaluated in this study. The results of this study have shown that the values obtained in the SALS test were lower than those obtained in the HWTT and UKWTT. The conversion of the SALS test results to the HWTT results yielded a good propensity value. The temperature is important parameter for determining the conversion coefficient factor.
        264.
        2018.05 구독 인증기관·개인회원 무료
        Pavement Condition Index (PCI) is an important index to establish a proper maintenance and rehabilitation strategy of a road network. The index is calculated based on the present state of surface defects, deformation and cracking. The information is normally obtained by visual inspection and observation of road networks. Nowadays, various sensor-based visual inspection techniques are applied to obtain detailed information of a road network, and to automate the entire process of calculating PCI. Hyperspectral analysis is a technique to identify the spectral signature of a material in the electromagnetic spectrum. The technique is being applied to pavement condition evaluation. Some researchers have reported that Exposed Aggregate Index (EAI) has a relationship with the reflectance of a hyperspectral image of a road network. In this study, the possibility of using hyperspectral images for pavement condition evaluation is experimentally investigated and the relationship between EAI and PCI is addressed.
        265.
        2018.05 구독 인증기관·개인회원 무료
        In recent years, there have been applied methods for minimizing noise by adjusting the method of installing soundproof walls, soundproof tunnels, soundproofing rims, environmental facilities, etc., and the shape of the surface texture of tire treads and packaging materials for the purpose of reducing road noise. Low noise pavement methods such as rubber asphalt (CRM), open graded asphalt concrete (OGAC), permeable Friction Courses (PFC), open graded friction courses (OGFC) and porous asphalt have been applied to reduce road noise. Especially, porous pavement is the most widely used low noise pavement with porous structure, which can reduce noise and drain water through continuous void of pavement. On the other hand, porous asphalt pavement has problems such as reduction of noise reduction effect and difficulty of road surface management due to void closing and increase of construction cost. The purpose of this study is to develop ultra-thin layer hot mix asphalt pavement method which maximizes road noise reduction effect by surface micro voids (Recover asphalt pavement) to improve void clogging of present porous pavement method. For this study, maximum size 5mm aggregate and cationic-treated fiber reinforced asphalt modifier (CSM) were used. The Marshall design method was applied grain-size distribution curve was based on SMA mix design. Marshall test, TSR, MMLS3 test and Hamburg test were carried out to evaluate the mechanical properties of ultra -thin layered asphalt pavement method with surface micro voids. Also, the effect of road noise reduction was evaluated through field application in urban area.
        266.
        2018.05 구독 인증기관·개인회원 무료
        It has been recognized that the performance of pavements is closely related to the properties of the underlying unbound layers and subgrade. It has also been recognized that unbound pavement materials possess a complex nature and often exhibit nonlinear behaviors [1, 2]. The Mechanistic-Empirical Pavement Design Guide (MEPDG) is founded on the use of resilient modulus as the primary input parameter when characterizing unbound pavement materials [3, 4]. The resilient moduli of unbound materials are typically determined by performing repeated load triaxial (RLT) tests in the laboratory. Due to that laboratory resilient modulus tests require sophisticated equipment and trained operators following complicated test procedures, many transportation agencies may not have access to the laboratory facility and opt to correlate resilient modulus with field tests [5]. The long-term pavement performance (LTPP) program offers a large and diverse database that includes a range of laboratory-derived and field-derived properties for unbound materials of many in-service pavement sections. This study is aimed to utilize LTPP data to develop a correlation between the laboratory-derived resilient modulus and a field-derived parameter, dynamic cone penetration index (DCPI) for unbound aggregate materials. Data extracted from the LTPP database were subjected to a thorough quality check to ensure that the data are of good quality and without errors. One-on-one univariate regression was first performed to examine the significance of different variables, including DCPI and some physical properties such as dry unit weight, water content, plasticity index, percent passing No.200 sieve. The physical properties that show strong correlation were selected to be combined with field test parameter (DCPI) to conduct a multivariate regression analysis. A statistical model was developed for the prediction of resilient modulus of unbound aggregates from the DCP test parameters and physical properties. The model predicted a separate data set that did not participate in the correlation analysis, suggesting the success of applying the DCP test in evaluating the resilient modulus of pavement unbound aggregate materials.
        267.
        2018.05 구독 인증기관·개인회원 무료
        In this paper the authors would like to present and share the measurements of load spectra and their modelling for pavement design purposes in the Mexican road network, which due to the intense level of trade with the United States present a very high percentage of heavy vehicles in the flow of vehicles and with high levels of load. Examples of these measurements are given in the country's main transport corridors. Damage spectra are also presented that are associated to each of the different axle types (i.e., single, dual, tandem, tridem or another one) by computing for instance the Miner damage coefficient in the same load ranges used in the definition of the load spectra. Is this frequency distribution of the Miner damage coefficient that is called damage spectra. The damage spectra seem to be a very useful tool to evaluate the pavement expected damage, i.e., rutting or fatigue cracking, induced for a given axle type. Moreover, it can be showed that there is a direct relationship between the forms in load and damage spectra. Some examples are presented to illustrate the damage spectra computations. The incorporation of these load spectra into mechanistic design methodologies and their implications in the definition of public policies for the preservation of the road network are discussed.
        268.
        2018.05 구독 인증기관·개인회원 무료
        Pavement performance usually depends on the pavement’s material property, traffic and environmental conditions. Current pavement design programs such as the Mechanistic Empirical Pavement Design Guide use these factors in assessing the pavement life and performance in terms of different distresses like rutting and fatigue cracking. Theoretically, the cracking and rutting behaviour of pavements are based on accumulated strains experienced by the pavement which is brought by the weight and loading speed of vehicles. A steady state loading device was used in the field to evaluate pavement deflection’s behaviour in varying loading frequencies. It was observed that the pavement deflection increases as the loading frequency also increases until it approaches a certain frequency wherein the deflection decreases thereafter. In this study, a three-dimensional finite element pavement model was established using ABAQUS wherein the effect of the vehicle’s loading frequencies was analysed. The calculated static deflection and stress from the finite element (FE) model were found to have good correlation with the KENPAVE measured deflection and stress. The deflections of different pavement conditions were further studied and analysed by generating several pavement geometries and strength from the FE model using a frequency sweep response analysis. It was found that the geometric condition and the current modulus of the pavement can amplify the pavement deflection by a factor, β, depending on the loading frequency. The peak deflection was found to be occurring when the loading frequency approaches one of the pavement’s natural frequencies. Based on the finding from this study, the natural frequency is an important factor to be considered in designing pavements. Further study is recommended to understand more on how to minimize the effect of natural frequency to pavement life.
        269.
        2018.05 구독 인증기관·개인회원 무료
        Road network in the Mekong Delta is mostly coastal and river routes, then they are often flooded when the floods come in. As a result, the foundation and pavement are destroyed, reduced life expectancy, resulting in unsafety in traffic, cost of maintenance and repairs…. This paper establishes the technical conditions for the calculation on the flexible pavement working in the wet conditions (so flooded) based on the maximum usage of available materials in the provinces in the Mekong Delta. Simultaneously, we propose the flooded flexible pavement under the current climate change conditions.
        270.
        2018.05 구독 인증기관·개인회원 무료
        The aged asphalt binder included in RAP due to the oxidative aging, repeated vehicle load, climate process affects to the recycled asphalt mixture property and performance (stripping, port hole and premature cracking initiation) after paving. The rejuvenator commonly is used to recover the aged binder in hot mix asphalt (HMA) containing RAP; the effect of rejuvenator in HMA had been proven according to many studies for over the past several decades. Also, there are many methods for using RAP in asphalt mixture in aspects of HMA, cold asphalt mixture (CMA) and worm mix asphalt mixture (WMA), and a foamed asphalt mixture is one of them. Employing the foamed asphalt manufacturing technology, the content of RAP in recycled asphalt mixture can be increased more. The objectives of this study are to evaluate of rejuvenator influence on foamed asphalt mixture using 100% RAP based on strength change of test sample and stiffness change of recovered binder from RAP and specimen. As the results, when rejuvenator was added to make foamed asphalt mixture, MS and ITS values decreased clearly as compared with the foamed asphalt mixture without rejuvenator use. The use of rejuvenator up to 6% showed a tendency of the decrease of strength and stability remarkably. The use of rejuvenator over 6% did not decrease the strength and stability. DSR test results, the use of rejuvenator in making a foamed asphalt mixture using 100% RAP showed a recovery effect of the foamed asphalt mixture. And recovered binder from the specimen that was made adding the 6, 12 and 18% rejuvenator showed lower stiffness obviously compared to the recovered binder from RAP adding same dosage of rejuvenator.
        271.
        2018.05 구독 인증기관·개인회원 무료
        In recent years there has been an increased number of cases where geogrid have been incorporated into unbound road base layers to promote roadway optimization. The term optimization in this context refers to the use of geogrid to form a mechanically stabilized base course layer which leads to an improved performance of unbound layers by controlling particle movement and reducing permanent deformations. A mechanistic based pavement design approach offers a better means to accommodate the geogrid effect within the pavement structure. Guidance published by AASHTO recommends that pavement designs incorporating the effect of a geosynthetic need to be based upon experimentally derived input parameters. Performance data obtained from full scale accelerated pavement test studies and monitored field trials can be used to determine the influence of a geogrid on performance over the life of the pavement. This paper will highlight the concept of pavement optimization and present several cases where both post construction and long term evaluation methods were utilized in the quantification of the effectiveness of geogrid stabilized pavement structures.
        272.
        2018.05 구독 인증기관·개인회원 무료
        Historically, the two major aspects of road design have been (i) The design principles – like AASHTO 1993 Empirical Design or lately, Mechanistic Empirical Pavement Design Method (MEPDM) (ii) The materials & technologies of pavement construction The fundamental design principles have not undergone major changes, however, the advancement in materials and technologies have improved tremendously over last few decades and this makes it necessary to revisit some of the conventional concepts in road design. The new technology now challenges the conventional wisdom and has brought us to the threshold of an era of all new sustainable green roads of tomorrow. AASHTO 1993 Empirical Pavement Design is the basis for pavement design today; in most parts of the world. In some parts of the world, there is a movement towards Mechanistic Empirical Pavement Design Guideline (MEPDG), but the movement is slow and gradual as this approach is expensive and heavily dependent on software programs due to its inherent computational complexities. The concept of Structural Number and Layer Coefficients of pavement layers under AASHTO 1993 Empirical Pavement Design was derived from AASHO road test carried out in Ottawa, Illinois between 1958 & 1960. The conventional Layer Coefficient value of 0.44 which is used today was recommended considering the strength of the construction materials available at that time. But, in view of the new technology available now, this needs to be revisited. Secondly, AASHTO 1993 Empirical Pavement Design provides for assuming certain values for Drainage Coefficients, ranging between 0.4 to 1.4, based on certain criteria. It is quite common to assume a value of 1 for drainage coefficient, in most parts of the world. Now, with the advent of new nanotechnology for waterproofing of road layers, it is possible to consider higher values for drainage coefficients. The new nanotechnology for soil stabilization can make subgrade soils well bonded, strong and flexible, allowing the designer to assume higher values of Resilient Moduli in the AASHTO 1993 design equation, which may bring the required structural number down and allow a lighter design of cross-section of structural layers on top of the subgrade. Indicative calculations for a typical 100 MSA, two lane (10 m wide) highway show that the new technology, while remaining within the AASHTO 1993 design guidelines, enables designing a pavement that is 3 times better (it will now be a 300 MSA pavement instead of 100 MSA) with a cost reduction of about USD 114000 per km. This paper takes an overview of latest trends in USA regarding pavement design approaches. It also puts forth, the opportunities presented to a pavement designer, by the new nanotechnology and proposes a new design approach, for optimized pavement design - green, sustainable & economical; while remaining within the AASHTO 1993 guidelines or MEPDG.
        273.
        2018.05 구독 인증기관·개인회원 무료
        Fly ash is used as alumina-silicate resource material to reaction processing on geopolymer materials. The strength of material is belonging to alkaline liquid, fly ash, activity reaction of fly ash. Geopolymer concrete as non-toxic, bleed free and high strength material can be used for construction on rigid pavement. Study on influence of polypropylene fiber on performance characteristic of geopolymer concrete is considered. In this research, the mix proportion with fly ash and alkaline liquid is used to react on geopolymer concrete. The poly-propylene fiber in range from 0 to 0.5% by volume is added in mixture of geopolymer concrete. The ratio between length and diameter in range of 100-500 is investigated. The results are indicated that workability of fresh concrete is reduced by using poly-propylene fiber. The adding of poly-propylene fiber is significantly affected on characteristic of geopolymer concrete. Poly-propylene fiber can be distributed in fly ash matrix and reduced shrinkage of concrete during activation. After geopolymerization, compressive and the flexural strength of concrete produced with fibers are enhanced up to 10% and 20%, respectively. However, when the length to diameter ratio increases, compressive strength is tended to decrease with mixture using polypropylene fiber.
        274.
        2018.05 구독 인증기관·개인회원 무료
        A number of roller-compacted concrete pavements (RCCP) have been constructed without saw-cut joints in order to save construction cost. Then it will allow natural cracks to randomly occur at the early age after concrete placement. Crack spacing of unjointed RCCP is crucial to ensure an adequate crack width and load transfer across the cracks since large crack spacing will result in excessive crack width and reduce load transfer efficiency that may be cause faulting, excessive deflection, and further cracking in RCCP slab. Due to pavement thickness, climatic condition, and material properties, unjointed RCCP may have different natural crack spacing. In this study, an analytical approach to predict natural crack spacing of an unjointed RCCP was developed. An analytical method based on elastic theory to calculate axial restraint stress using a bilinear slab-subbase interfacial constraint assumption was conducted. Curling stress induced by temperature gradient through the depth of the slab was also considered. The analytical model incorporates the environmental effect, strength gain and modulus of elasticity, coefficient of thermal expansion, drying shrinkage, base type materials, and slab geometries. The predicted crack spacing results obtained from the predictive model were validated through field measured data. The results showed a good agreement compared with crack spacing measured in the field. Furthermore, the result from a sensitive analysis using proposed predictive model showed that crack spacing increased when thickness of RCCP increased. The predicted crack spacing results may be used as input parameters to estimate crack widths in unjointed RCCP under given climatic condition, and material properties. If estimated crack width is excessive and cannot maintain an adequate load transfer across the cracks, saw-cut joints with an appropriate spacing should be provided in order to minimize crack width, and to prevent future cracking of RCCP leading to better performance.
        275.
        2018.05 구독 인증기관·개인회원 무료
        Roller-compacted concrete (RCC) has been widely used for construction of pavements [1]. The strength of RCCP can be obtained from not only hydration of binder but also the aggregate interlock resulted from roller-compaction [2]. For this reason, RCCP normally achieves higher strength compared to conventional concrete pavement with similar cement content. Even though RCCP can be provided a good structural performance, it has been difficult to verify the long-term performance though actual field construction. Therefore, this study aimed to investigate the fatigue characteristics and crack development in RCCP based on full-scale fatigue test and accelerated pavement test. In case of full-scale fatigue tests, fatigue behavior was evaluated by using 1 m × 1 m dimensional RCC slab specimens obtained from the field in order to consider the field variability. Fatigue equation derived from this study shows that the number of load repetitions which causes fatigue failure at the same stress level is slightly larger than that of PCA fatigue equation. In order to evaluate the performance of RCCP, two phases of accelerated pavement test (APT) were conducted. In phase one, the performance of RCCP at two different strengths (35.6 and 30.4 MPa) was evaluated. In phase two, the performance of RCCP with different thickness (5, 7.5 and 10 cm) was investigated. The number of load repetition of fatigue crack occurrence in each section was compared to the estimated fatigue failure determined from fatigue equation of RCCP. The crack development in each section was compared to the AASHTO crack model for JPCP. Overall, it was confirmed that RCCP has equal or better performance compared to JPCP the estimation in term of fatigue cracking. The fatigue equation from PCA and cracking model from AAHTO can be used on RCCP at certain design thickness range.
        276.
        2018.05 구독 인증기관·개인회원 무료
        Airport concrete slabs behave by combined loads including environmental loads and traffic loads. To analyze the behavior of concrete slabs by combined load, the dynamic strain gages were embedded at 2 depths(50mm, 450mm) and 3 locations(corner, Center and Mid-Edge). And the thermometers were embedded at 5 depths(50mm, 150mm, 250mm, 350mm, 450mm) in actual airport concrete slabs. HWD(Heavy Weight Deflectometer) is a device to measure the deflection by applying an impact load. The values calculated by the HWD test are deflection, ISM(Impact Stiffness Modulus), LTE(Load Transfer Efficiency). Concrete slabs tend to expand during the summer when the temperature is high, and contract during the winter when the temperature is low. In addition, the drying shrinkage occurs as age increases. Field HWD test were conducted in March, May, August, and November to examine seasonal and age-specific changes. Furthermore, the temperature difference between top and bottom of concrete slabs causes the curl-up and curl-down behavior. The test was conducted 3 times at 12o`clock, 16o`clock, 21o`clock, 3o`clock, 7o`clock to examine temporal changes. The strain of the slab at HWD strike was measured 500 times per second because the strain occurred instantaneously, and the temperature was measure 1 times per 10 minutes. The calculated values and the measured values varied according to environmental loads. In order to examine these values in various angles, the equivalent linear temperature difference obtained by converting the temperature by depth into the uppermost lowermost temperature difference, the temperature of the slab which changes seasonally as a whole, and the drying shrinkage which occurs as the age increases are considered. Therefore, the purpose of this study is to clarify the behavior of concrete slabs by combined load considering long - term drying shrinkage, annual variation of temperature, and daily variations. This study was supported by Incheon International Airport Corporation(BEX00625) and Korea Airports Corporation.
        277.
        2018.05 구독 인증기관·개인회원 무료
        In this study, the effect of dry shrinkage of concrete pavement due to seasonal changes was analyzed by comparing the results of finite element analysis with the temperature and strain measurements at Incheon airport pavement. To measure the behavior of slab by environmental condition in site, static strain gauges and thermometers were installed. To predict changes in the properties of concrete slab, experiments were conducted in site as well as in the lab. The considered parameters of FEA were pavement conditions according to seasonal and material properties change. The results of field measurements and the strain by FEA analysis were different in terms of the effects of drying shrinkage. This is due to humidity changes not applied to input values during FEA analysis. In this study, the difference between the results of field measurements and the results of the finite element model analysis was used to identify the drying shrinkage occurring on the concrete slab. Long-term data analysis in the future will enable the analysis of the trends in drying shrinkage in airport concrete pavement. This study was supported by Incheon International Airport Corporation(BEX00625).
        278.
        2018.05 구독 인증기관·개인회원 무료
        This document gives a result of experiments on concrete using admixture Sikament® R4 combine with Sikacrete PP1. In developing countries, the development guides to build and set up a new infrastructure. In this case, the schedule of works is very important, which depends on the setting time of concrete structure. Specially, in tropical monsoon climate country, we need to use admixtures to increase the life time of constructions, especially concrete structures. Today, there are thousands of building, roads and bridges will be made. By using admixture, it not only helps to save the waiting time on the work site, but also increase quality of concrete structure. By using these good effects of admixtures, it’s necessary to find an optimal ratio of them in the mix design ingredient of concrete. The concrete strength can be controlled by changing a range of variety ratio of admixture in the mix design. This topic will find out the role of admixture and its relationship with the compressive strength of concrete.
        279.
        2018.05 구독 인증기관·개인회원 무료
        There are some places such as bridges in the heavily industrialized area where the pavement should have a strong resistance against heavy axle loading and waterproof function. In those places, many polymer-modified asphalt (PMA) pavements were applied to protect premature cracking, severe rutting and water intrusion without success. Therefore, a much tougher pavement material with waterproofing function was developed for those places. This study evaluated important properties of the special type asphalt mixture which is highly condensed to be almost void-free condition. A high-quality PMA binder with PG82-34 grade was used for preparing the mixture and the optimum binder content was determined to allow near 0% air void in the mix design. The deformation strength(SD) by Kim Test and rut depth by wheel tracking test were measured at 60℃ as high temperature properties. The flexural strength and fracture toughness was measured at -10℃ as low temperature property. The void-free AC showed the higher performance in all four properties than any other asphalt concretes which were prepared for comparison. Therefore, it was shown that the normal concern about limiting air voids within 3-5% was just an apprehension. The void-free AC can be applied for heavy duty pavement on the bridge where the water-proofing function and higher rutting and cracking resistance are required.
        280.
        2018.05 구독 인증기관·개인회원 무료
        Tram had been widely used in South Korea until 1960s; however, introduction of automobiles made the tram disappear. KRRI (Korea Railroad Research Institute) has developed wireless tram in order to enhance transporting capacity in large city. Continuously supported and embedded track system supports load from a wireless tram. The track system is composed of concrete slab or precast concrete and groove rail. Surface of the track is usually constructed by asphalt concrete. The asphalt concrete layer is about 5 cm in depth and constructed between rails of which width is 1435 mm. Adhesion between concrete slab and asphalt concrete layer and constructability, which affects performance, were investigated through actual construction and testing at test-bed. Four different types of mixtures and structures were used. After construction, adhesion tests were performed including basic material tests. Guss-asphalt with SMA showed the best adhesion and constructability.