검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 382

        301.
        2015.09 서비스 종료(열람 제한)
        The four transcription factors Oct4, Sox2, Klf4 and c-Myc have been used for making induced pluripotent stem cells. Many efforts have focused on reducing the number of transcription factors, especially c-Myc and Klf4 known as oncogene, for making induced pluripotent stem cells. Recently it have been demonstrated that Oct4 and Sox2 are able to reprogram human fibroblasts or cord blood cells to induced pluripotent stem cells and Oct4 has the ability to reprogram mouse and human neural stem cell to induced pluripotent stem cells. These researches imply cell types for reprogramming experiments have great influence on selection of reprogramming factors. Here we report that pig kidney cortex fibroblasts need only c-Myc factor when they are used for making induced pluripotent stem cells. We used two vector system including drug-inducible vector system and constitutive expression vector system. The two systems generate induced pluripotent stem cells from pig kidney fibroblasts successfully. These one-factor induced pluripotent stem cells are not only similar but also different to pig embryonic stem-like cells. These two one-factor induced pluripotent stem cell lines can express pluripotency related genes and be differentiated into all three germ layers in vitro. However, these two cell lines can be sub-cultured as a single cell by trypsin. Our results support that single factor, c-Myc, is sufficient to converting pig kidney cortex fibroblasts into induced pluripotent stem cells.
        302.
        2015.09 서비스 종료(열람 제한)
        The aim of this study was to enhance the proliferation efficiency of spermatogonial stem cells (SSCs). In order to improve the proliferation efficiency, we investigated new factors that promote the proliferation of SSCs using in vitro culture method with natural plant extracts. Germ cell populations containing SSCs were collected 6- to 8-days-old from C57BL/6-TG-EGFP (C57GFP) mice and SSCs were isolated from the collected cells via magnetic-activated cell sorting (MACS). Since then, SSCs were cultured for a week with culture medium containing natural plant extracts at concentration of 0.1, 1, and 10 μg/mL. After a week of culture, we looked for an increase, especially a dose-dependent increase, in the number of cells compared to that of the control group. A dose-dependent increase, in the number of cells was observed in the Petasides japonicus-treated groups. Furthermore, we carried out repeated experiment that is process consisting of selection and additional segmentation to explore new factors for activating SSCs at the molecular level. As a results, Petasides japonicus butanol fraction significantly increased the proliferation rate of SSCs in a dose-dependent manner among Petasides japonicus fraction samples. We identified normal expression level of PLZF in SSCs cultured with plant extracts using immunocytochemistry method. Furthermore, we also carried out qRT-PCR and identified normal expression level of Lhx1 and GFRα1. The finding of this study could contribute to improvement of proliferation and activation for SSCs, using culture method with natural plant extracts.
        303.
        2015.09 서비스 종료(열람 제한)
        Hepatocytes and hepatic progenitors derived from human ES cells may be a useful source for clinical application. Therefore, identification and purification of these cell types would be following important issues. There are very few candidate surface markers that can be used to identify and purify hepatic progenitor cells. In addition, indocyanine-green can be uptaken by mature hepatocytes, but cannot be applied for fluorescence activated cell sorting (FACS) due to its long emission wavelength. In the present study, we tested EpCAM as a potential marker for magnetic-activated cell sorting (MACS) of hepatic progenitors and also modified indocyanine-green into fluorescent indomonocarbocyanine for FACS-mediated sorting of mature hepatocytes after differentiation of human ES cells. Hepatic progenitor cells were sorted by MACS after incubation with anti-human EpCAM antibodies. After the final differentiation, the differentiated cells and mouse primary hepatocytes (control group) were incubated with indomonocarbocyanine and were sorted by FACS. MACS and immunocytochemistry data showed that approximately 45% of differentiated cells were EpCAM-positive cells. EpCAM-positive cells expressed α-fetoprotein, FOXa2, HnF4a, and CK18. Differentiation efficiency into albumin-positive cells was significantly higher in EpCAM-positive cells, compared to EpCAM-negative cells. Importantly, indomonocarbocyanine successfully stained cells that expressed ALB. Furthermore, FACS analysis data showed that the purity of hepatocytes that expressed albumin was significantly increased after purification of indomonocarbocyanine-positive cells. Our data demonstrated that human ES cell-derived hepatic progenitors can be efficiently isolated by MACS using EpCAM antibody. In addition, we also showed that indomonocarbocyanine can be successfully used to identify and purify mature hepatocytes using FACS.
        304.
        2015.09 서비스 종료(열람 제한)
        Hepatocyte-like cells (HLCs) derived from human pluripotent stem cells have received extensive attention in the development of drug screening and toxicity testing. However, it has been reported that stem cell-derived HLCs showed hepatic functions that were too limited to be of use in drug screening and toxicity testing, possibly due to the lack of sufficient intercellular communication under conventional two-dimensional (2D) culture conditions. Therefore, a 3D differentiation system may overcome the in vitro limitation of 2D culture to produce stem cell-derived hepatocytes with mature metabolic functions. In this study, the feasibility of using a silicone-based spherofilm, specifically designed to produce spherical cell clusters, to generate uniformly sized 3D hepatic spheroids from hESCs was investigated. Hepatic spheroids generated on the spherofilm showed more homogenous size and shape than those generated in conventional low-attachment suspension culture dishes. Results of immunohistochemical analysis showed that expression of the mature hepatic marker albumin (ALB) increased over time during the hepatic maturation process. Furthermore, the 3D culture system mimicked the in vivo 3D microenvironment. Laminin, which is an important component of hepatic ECM, was expressed in hepatic spheroids. The results of immunohistochemical analysis indicated that the 3D culture environment is capable of generating an in vivo-like microenvironment. In addition, quantitative PCR analysis showed that the mature hepatic marker ALB and cytochrome P450 (CYP) enzymes CYP3A4 and CYP3A7 were expressed at higher levels in 3D culture than in 2D culture. This indicates that the 3D culture system is suitable for hepatic maturation and that our size-controlled 3D culture conditions might accelerate hepatic function. These results suggest that 3D hepatic spheroids significantly enhance metabolic maturation of hepatocytes derived from hESCs
        305.
        2015.09 서비스 종료(열람 제한)
        Spermatogonial stem cells (SSCs) possess the unique capacity of self-renewal and differentiation and thereby can transmit genetic information to the next generation. Combination with techniques such as isolation, culture, preservation, and transplantation of the SSC has facilitated the efficient method for production of transgenic animals, and preservation of livestock and endangered species. The purpose of this study was to genetically modify enriched populations of pre-pubertal germ cells using lentiviral transduction and to develop an efficient in vitro culture system and cryopreservation technique for bovine SSCs. To maximize the efficiency of genetic modification of bovine SSCs, effective enrichment techniques need to be developed. Selection of bovine SSCs using a combination of laminin and gelatin was resulted in a 8-fold enrichment. Selected cells were then transduced using a lentiviral vector containing the transgene for the enhanced green fluorescent protein. Transduction efficiency was 17%. Next, to enhance the efficiency of proliferation for in vitro culture, the effects of various culture conditions and growth factors on bovine cell proliferation were evaluated. Based on the results, we developed the optimal culture conditions [2× rat sertum free medium (rSFM) containing 0.1% FBS together with GDNF, GFRα1, bFGF, EGF, LIF, and CSF-1] for maintaining bovine SSCs over 3 months without any alteration of stem cell characteristics and functions. Also, to develop an effective cryopreservation technique for bovine SSCs, the effects of different freezing methods and various cryoprotective agents were tested. The recovery rate, and proliferation capacity of bovine SSCs were significantly greater for germ cells frozen using tissue freezing methods compared to cell freezing methods. Cryopreservation in the presence of 200 mM trehalose resulted in significantly greater recovery rate, and proliferation capacity of germ cells compared to control. As a results, cryopreservation using tissue freezing methods in the presence of 200 mM trehalose is an efficient cryopreservation protocol for bovine SSCs. Collectively, these findings can serve as a model for comprehensively understanding the biology of SSCs and the factors that regulate male fertility. Furthermore, results of this study will be integral for the continued refinement of techniques to manipulate bovine SSCs.
        306.
        2014.12 KCI 등재 서비스 종료(열람 제한)
        Previously we have shown that human abdominal adipose derived-stem cells (ADSCs) could aggregate during the high-density culture in the presence of human serum (HS). In the present study, we observed that human cord blood serum (CBS) and follicular fluid (HFF) also induced aggregation. Similarly, porcine serum could induce aggregation whereas bovine and sheep sera induced little aggregation. qRT-PCR analyses demonstrated that, compared to FBS-cultured ADSCs, HScultured cells exhibited higher level of mRNA expression of CLDN3, -6, -7, -15, and -16 genes among the tight junction proteins. ADSCs examined at the time of aggregation by culture with HS, BSA, HFF, CBS, or porcine serum showed significantly higher level of mRNA expression of JAM2 among JAM family members. In contrast, cells cultured in FBS, bovine serum or sheep serum, showed lower level of JAM2 expression. Immunocytochemical analyses demonstrated that the aggregates of HS-cultured cells (HS-Agg) showed intense staining against the anti-JAM2 antibody whereas neither nonaggregated cells (HS-Ex) nor FBS-cultured cells exhibited weak staining. Western blot results showed that HS-Agg expressed JAM2 protein more prominently than HS-Ex and FBS-cultured cells, both of latter reveled weaker intensity. These results suggest that the aggregation property of ADSCs during high-density culture would be dependent on the specific components of serum, and that JAM2 molecule could play a role in the animal sera-induced aggregation in vitro.
        307.
        2014.09 서비스 종료(열람 제한)
        Development of the central nervous system (CNS) occurs normally in mammalian fetus despite lower temperature in the brain region than in the heart. To investigate the effects of temperature niche on the neural differentiation of stem cells in vitro, P19 embryonic carcinoma (EC) stem cells and N2a neuroblastoma stem cells were induced to undergo neural differentiation by retinoic acid and LiCl, respectively. The cells were analyzed for the expression of neural marker genes during 12 days differentiation. Although there were Map2 and NCAM expressions in both groups, no clear difference was found. Similarly, expression patterns of Tuj1 and NF-M were not different in both groups, showing more intensive staining patterns at day 12 than those at days 4 and 8, respectively. However, more cells expressed GFAP markedly at day 12 in 37℃ group. There was little expression of the above markers in N2a cells during differentiation except for Ngn2 and Tuj1. It was found that Ngn2 was expressed more intensely at days 6 and 9 in 33℃ group. Tuj1 expression showed a similar pattern to those of P19 EC cells. RT-PCR analysis also showed that the expressed transcripts did not quite different in both groups, although they were different among the days of differentiation. Thus, it appears that neural differentiation occurs normally with a slight delay and probably less cell death in the cells at 33℃ than that at 37℃.
        308.
        2013.12 KCI 등재 서비스 종료(열람 제한)
        Human serum (HS) has been reported to induce aggregation of human eyelid adipose-derived stem cells (HEACs) during high-density culture in vitro. The present study focused on the role of cell adhesion molecules and gelatinases during HS-induced aggregation of HEACs. HS-induced aggregation occurred between 9-15 days of culture. Cells aggregated by HS medium (HS-agg) showed stronger expression of α2, α2B, αX, and CEACAM1 genes compared to non-aggregated cells in HS medium (HS-ex) or in control FBS-cultured cells. HS-agg were distinctly labeled with antibodies against α2, α2B, and αX proteins. Western blot results demonstrated that the two integrin proteins were greatly expressed in HS-agg compared to HS-ex and control FBS-cultured cells. Treatment of HEACs with anti-integrin α2 antibody during culture in HS medium delayed aggregation formation. HS-agg exhibited strong expression of MMP1 and MMP9 compared to HS-ex or FBS-cultured cells. Conditioned media from HS-culture showed remarkable increase of MMP9 gelatinolytic activity in comparison to those from FBS-culture. However, there was no change of TIMP mRNA expression in relation to the HS-induced aggregation. Based on these results, it is suggested that integrin α2, α2B, and αX, and MMP9 might play an important role in the HS-induced aggregation of HEACs.
        309.
        2013.12 KCI 등재 서비스 종료(열람 제한)
        Embryonic stem (ES) cells can self-renew and differentiate to various cells depending on the culture condition. Although ES cells are a good model for cell type specification and can be useful for application in clinics in the future, studies on ES cells have many experimental restraints including low transfection efficiency and transgene expression. Here, we observed that transgene expression after transfection was enhanced by treatment with histone deacetylse (HDAC) inhibitors such as trichostatin A, sodium butyrate, and valproic acid. Transfection was performed using conventional transfection reagents with a retroviral vector encoding GFP under the control of CMV promoter as a reporter. Treatment of ES cells with HDAC inhibitors after transfection increased population of GFP positive cells up to 180% compared with untreated control. ES cells showed normal expression of stem cell markers after treatment with HDAC inhibitors. Transgene expression was further enhanced by modifying transfection procedure. GFP positive cells selected after transfection were proved to have the stem cell properties. Our improved protocol for enhanced gene delivery and expression in mouse ES cells without hampering ES cell properties will be useful for study and application of ES cells.
        310.
        2013.08 서비스 종료(열람 제한)
        Biological resources including proteins, cells, and tissues were confronted with both safe and stable preservation for practical use in biotechnological industry. Particularly, cell therapy for regenerative engineering is needed to restricted regulation and accurate preservation. Therefore, this study was investigated improved conditions of mesenchymal stem cells from human umbilical cord (hUCs) or aspirated adipose tissues (hATs) for clinical cell banks. Both cells were isolated according to standard operation procedure of Hurim BioCell Inc. and analyzed the inherent characteristics in passage 4. To compare the ability of experimental groups after cryopreservation, proliferation ability using calculated values and cytomorphological patterns of each experimental step were analyzed. Also proteins such as ice-binding protein or caspase inhibitor were applied to add the preservation medium of hUCs or hATs. Result of preservation solution with 20% serum was considered a positive group. Recovery rate and expansion results showed specific dosage and cell type-dependent differences in the experimental group. Chromosomal stability and multipotency of hUCs or hATs were expressed stable pattern after cryopreservation using advanced medium. As a result, these additives could be substituted for xenogenic sources in banking of hUCs or hATs.
        311.
        2013.08 서비스 종료(열람 제한)
        One of the most effective and safe therapeutic methods for treating vitiligo, mixed autologous keratinocytes (KCs) and melanocytes (MCs) cultures have been used for autologous cell transplantation. However, the present transplantation method is faced with a problem that may require a large amount of skin tissue and keratinocytes have limited culture potency. We have found previously that human adipose derived stromal cells (hASCs) from aspirated fat tissue could be used in place of KCs and sufficient amounts of hASCs for transplantation could be obtained by small amount of aspirated fat tissue. The present investigation was determined the effect of ASCs on ex vivo expansion MCs for transplantation. In addition, we examined for a preservation conditions of MCs which have reported low recovery rates and a slowdown in growth after cryopreservation. Various conditions including ASCs ratio, incubation period, and additive materials for MCs cultivation was determined to improve the expansion ability of MCs. The growth rate of MCs colony was elevated 6.85 folds compared the previous conditions. These MCs showed a specific expression of immature melanocyte protein, Trp-2, but did not express the mature melanocyte proteins and markers (c-kit, CD133, and etc.) of mesenchymal stem cells that represents in ASCs feeder. Results in cryopreservation experiments were determined a preservation medium for MCs showing an increased recovery rates after thawing. The characteristics of MCs after cryopreservation using a designed medium were indicated consistent morphology and immunophenotype. In conclusion, ASCs as a feeder could be used in place of keratinocytes for ex vivo expansion of MCs. For clinical trial for vitiligo patients, efficiency experiments in preclinical state should be followed.
        312.
        2013.08 서비스 종료(열람 제한)
        Recently, human mesenchymal stem cells (MSCs) are attracting attention as a useful source for regenerative therapy. Controlled production of cell therapy requires the establishment and management of an accurate isolation, characterization and monitoring for quality assurance of developing MSCs mediated. In this study, we were confirmed maintenance of potency of isolated and cultured human umbilical cord (hUC)-MSCs during ex vivo expansion or after cryopreservation. Expression of their cell specific marker was analyzed by flow cytometry and the differentiation potency was confirmed by guided differentiation of adipocyte, osteocyte, chondrocyte and hepatocyte after expanding over 15 doublings in vitro. Safe production of developing a cell therapy was proved by testing for microbial, mycoplasma, endotoxin, and adventitious agents. Also stability of cells in cultivation, preservation and/or differentiation was determined chromosomal assay. In developing using hUC-MSCs, cells showed an accurate isolation and stable expansion in ex vivo condition. The results of several management assay showed that the stem cell marker expression of CD31, CD34 and CD45 were under 10%, however CD90 was over 90% by FACS analysis. Any contamination and mutation in all tests weren't detected in specific points for safe or stable production of hMC-MSCs. Also the proliferation and differentiation potency maintains during in vitro culture and after cryopreservation of hUC-MSCs. These results could be used as standard methods of maintenance of hUC-MSCs for cell therapy products and clinical application.
        314.
        2012.12 KCI 등재 서비스 종료(열람 제한)
        Human embryonic stem (ES) cells are a potential source of cells for developmental studies and for a variety of applications in transplantation therapies and drug discovery. However, human ES cells are difficult to culture and maintain at a large scale, which is one of the most serious obstacles in human ES cell research. Culture of human ES cells on MEF cells after disassociation with accutase has previously been demonstrated by other research groups. Here, we confirmed that human ES cells (H9) can maintain stem cell properties when the cells are passaged as single cells under a feeder-free culture condition. Accutase-dissociated human ES cells showed normal karyotype, stem cell marker expression, and morphology. We prepared frozen stocks during the culture period, thawed two of the human ES cell stocks, and analyzed the cells after culture with the same method. Although the cells revealed normal expression of stem cell marker genes, they had abnormal karyotypes. Therefore, we suggest that accutase-dissociated single cells can be usefully expanded in a feeder-free condition but chromosomal modification should be considered in the culture after freeze-thawing.
        315.
        2012.12 KCI 등재 서비스 종료(열람 제한)
        Fetal bovine serum (FBS) is the most frequently used serum for the cultivation of mammalian cells. However, since animal-derived materials might not be appropriate due to safety issues, allogeneic human serum (HS) has been used to replace FBS, particularly for the culture of human cells. While there has been a debate about the advantages of HS, its precise effect on human adult stem cells have not been clarified. The present study aimed to investigate the effect of HS on the human eyelid adipose stem cells (HEACs) in vitro. When HEACs were cultivated in a medium containing 10% HS, many cells moved into several spots and aggregated there. The phenomenon was observed as early as 9 days following 10% HS treatment, and 12 days following 5% HS plus 5% FBS treatment. However, the aggregation was never observed when the same cells were cultivated with 10% FBS or bovine serum albumin. To examine whether cell density might affect the aggregation, cells were seeded with different densities on 12-well dish. Until the beginning of aggregation, cells seeded at low densities exhibited the longest culture period of 16 days whereas cells seeded at high densities showed the shortest period of 9 days to form aggregation. The number of cells was as the least for the low density group, and as the greatest for the high density group. When human cord blood serum or normal bovine serum was examined for the same effect on HEACs, interestingly, cord blood serum induced the aggregation of cells whereas bovine serum treatment has never induced. When cells were cultivated with 10% HS for 9 days, they were obtained and analyzed by RT-PCR. Compared to FBS-cultivated HEACs, HS-cultivated HEACs did not express VIM, and less expressed GATA4, PALLD. On the other hand, HS-cultivated HEACs expressed MAP2 more than FBS-cultivated HEACs. In conclusion, human adult stem cells could move and form aggregates by the treatment with human body fluids.
        316.
        2012.12 KCI 등재 서비스 종료(열람 제한)
        The proliferation of embryonic cells or adult stem cells in tissue is critically regulated during development and repair. How limited the proliferation of cells, so far, is not much explored. Cell-cell contact proliferation inhibition is known as a crucial mechanism regulating cell proliferation in vitro and in vivo. In this study we examined the characters of mouse subcutaneous adipose derived stem cells (msADSC) whether they lost or get contact inhibition during in vitro culture. The characters of msADSC growth after confluence were analyzed using confocal microscope and the expression profiles of contact inhibition related genes were analyzed according to the morphological changes using real-time PCR method. msADSC showed overlapping growth between them but not after passage 14. The cell shapes were also changed after passage 14. The expression profiles of genes which are involved in contact inhibition were modified in the msADSC after passage 14. The differentiation ability of msADSCs to adipocyte, chondrocyte and osteocyte was not changed by such changes of gene expression profiles. Based on these results, it is revealed that smADSC were characterized by getting of strong cell-cell contact inhibition after passage 14 but the proliferation and developmental ability were not blocked by the change of cell-cell contact proliferation inhibition. These finding will help to understand the growth of adipose tissue, although further studies are needed to evaluate the physiological meaning of the cell-cell contact proliferation inhibition during in vitro culture of msADSC.
        317.
        2012.09 서비스 종료(열람 제한)
        Human embryonic stem cells (hESCs) are promising cell source because of their unique self-renewal and pluripotency. Although hESC-derived cardiac cells are currently generated worldwide, cryopreservation of these cells is still limited due to low rate of post-thaw survival. Cryopreservation of hESC-derived cardiac cells is critical in that their long-term storage can accelerate their use in regenerative medicine. However, to date, there are few reports on efficient cryopreservation and post-thaw survival of hESC-derived cardiac cells. In this study, we evaluated the effects of ginsenoside, which is known to improve survival of rat embryonic cardiomyocytes against myocardial ischemia injury in diabetic rats (Wu et al., 2011), on the survival of hESC-derived cardiac cells after thawing. We induced differentiation into cardiac cells using our previously reported method (Kim et al., 2011). Differentiated, pre-beating stage cardiac cells were cryopreserved using either mass cryopreservation or vitrification. To evaluate the effects of ginsenoside (Re, Rb), we compared three sets: pre- and post-thaw treatment, pre- or post-thaw treatment only. The survival of post-thaw cardiac cells were evaluated using Trypan-blue and Annexin V staining. In addition, the three groups were treated with ROCK inhibitor Y-27632, and compared with non-treatment groups. The effect of ginsenoside was significant in post-thaw treatment group, i.e, thawed cells expressed cardiac specific genes and showed specific functionality such as spontaneous beating. Taken together, we demonstrated favorable effects of ginsenoside on the survival of hESC-derived cardiac cells after cryopreservation and thawing. These results suggest a possible application of well-known cardioprotectant ginsenoside in cell-based tissue engineering using hESC-derived cardiac cells.
        319.
        2011.12 KCI 등재 서비스 종료(열람 제한)
        Human eyelid adipose-derived stem cells (hEAs) and amniotic mesenchymal stem cells (hAMs) are very valuable sources for the cell therapeutics. Both types of cells have a great proliferating ability in vitro and a multipotency to differentiate into adipocytes, osteoblasts and chondrocytes. In the present study, we evaluated their stem cell characteristics after long-time cryopreservation for 6, 12 and 24 months. When frozen-thawed cells were cultivated in vitro, their cumulative cell number and doubling time were similar to freshly prepared cells. Also they expressed stem cell-related genes of SCF, NANOG, OCT4, and TERT, ectoderm-related genes of NCAM and FGF5, mesoderm/endoderm-related genes of CK18 and VIM, and immune-related genes of HLA-ABC and 2M. Following differentiation culture in appropriate culture media for 2-3 weeks, both types of cells exhibited well differentiation into adipocyte, osteoblast, and chondrocyte, as revealed by adipogenic, osteogenic or chondrogenic-specific staining and related genes, respectively. In conclusion, even after long-term storage hEAs and hAMs could maintain their stem cell characteristics, suggesting that they might be suitable for clinical application based on stem cell therapy.
        320.
        2011.12 KCI 등재 서비스 종료(열람 제한)
        MicroRNAs (miRNAs) function as a key regulator of diverse cellular functions. To find out novel miRNAs that promote the differentiation of mouse embryonic stem cells (mESCs), we compared the miRNAs expression profiles of mESCs under self-renewal vs. differentiation states. We noticed that miR-222 was highly expressed during the differentiation of mESCs. Quantitative RT-PCR analysis revealed that expression of miR-222 was up-regulated during the embryonic bodies formation and retinoic acid -dependent differentiation. When miR-222 was suppressed by antogomiR-222, the differentiation of mESCs was delayed compared to control. Self-renewal marker expression or cell proliferation was not affected but the expression of lineage specific marker was suppressed by the treatment of miR-222 inhibitor during the differentiation of mESCs. Taken together, these results suggest that miR-222 functions to promote the differentiation of mESCs by regulating expression of differentiation related genes.