파양한 구조물의 정적해석에서 매트릭스구조해석법은 가상 폭넓게 사용되고 있는 강력한 해석기법이다. 그러나 이 방법으로 많은 수의 자유도를 갖는 구조물을 정확히 해석하기 위해서는 많은 계산 메모리와 빠른 처리 능력을 갖춘 고성능 컴퓨터를 필요로하는 취약점이 있다. 따라서 매트릭스구조해석법으로 많은 수의 자유노를 갖는 구조물을 퍼스널 컴퓨터 상에서 정확히 해석하기에는 곤란한 경우가 많다. 매트릭스구조해석법치 이러한 취약점을 극복하기 위하여, 저자들은 전달강성계수법을 제안한다. 전달강성계수법은 해석대상 구조물에 대한 강성계수의 전달에 기본 개념을 두고 있으am로 퍼스널 컴퓨터에 매우 적합한 해석기법이다. 본 논문에서는 골조추조물에 대한 정적해석 알고리듬을 전달강성계수법으로 정식화한다. 그리고 전달강성계수법, NASTRAN, 매트릭스구조해석법 그리고 해석해에 의한 계산 결과들의 비교를 통해 전달강성계수법의 유효성을 확인한다.
Research about spherical shells been applying most usually is achieved by many investigators already and generalized equation has been derived. But, existent research is limited in case that spherical shell's roof rigidity is isotropy or orthotropy, and research that consider periodicity of rigidity-distribution that can happen by doing spherical shell's roof system by lattice system is not gone entirely. The purpose of this paper is applying Galerkin method to spherical shell that model periodicity of roof rigidity distribution that appear by roof lattice form of large space structure and develop structural analysis program that formularize. Rigidity-model of this research selects that of spherical shell which has 2-way grid. In this paper, buckling-strength and deformation distribution of isotopic spherical shell and 2-way grid spherical shell obtained by developed program could confirm the reliability by comparison with result of existent research.
현재 국내에서는 아파트 건물을 짓는데 벽과 바닥판으로만 이루어진 벽식 구조형식을 많이 사용하고 있다. 이러한 고층 아파트건물을 해석하기 위해서 ETABS나 MIDAS/BDS 같은 상용프로그램이 주로 사용되고 있다. ETABS는 해석상의 편의를 위하여 바다판을 강막으로 가정하여 모형화 하고 바닥판의 휨강성은 고려하지 않고 있다. 이러한 가정은 프레임 구조물을 해석할 때에는 합리적이라고 할 수 있다. 그러나 벽식 구조물은 바닥판의 휨강성이 전체 구조물의 횡방향 강성에 큰 영향을 미치므로 바닥판의 휨강성을 고려하지 않으면 전체 구조물의 강성을 과소평가하게 된다. 따라서 바닥판을 판요소로 세분하여 모형화 하는 것이 필요하다. 그러나 이때 많은 양의 해석 시간과 컴퓨터 메모리가 필요하게 된다. 따라서 본 연구에서는 부분구조법과 행렬응축기법을 사용하여 해석 시간과 컴퓨터 메모리의 사용을 줄이면서도 바닥판의 휨강성을 효율적으로 해석할 수 있는 해석 기법을 제안하였고 예제를 통하여 검증하였다.
유연한 액체 저장탱크 내 유체의 부가질량 및 슬러싱 강성행렬을 도출하는 새로운 방법을 제시하였다. 비점성, 비압축성 이상유체를 표면 출렁임을 고려하여 경계요소법에 의하여 모델링하였다. 유체의 표면과 저장탱크 벽체의 접촉면과 같은 불연속 경계를 다루기 위해 특별한 과정을 도입하였다. 원통형 액체저장탱크의 지진응답해석에 적용하여 우수한 결과를 얻을 수 있음을 확인하였다.
본 연구에서는 골조의 안정과 구조적인 거동에 영향을 미치는 2차 효과에 의한 기하학적 비선형 문제, 세장비가 작은 부재 단면의 소성, 보-기둥 접합부의 상태, 그리고 부재 내부에 발생되어 있는 기하학적 초기결함을 고려한 복합적인 비선형 해석프로그램을 개발하여, 철골조 구조물의 거동을 근사적으로 예측하고자 한다. 그리고, 각 비선형 해석의 신뢰성을 검증하고, 상호관계를 파악되기 위해서 각 해석에 따른 좌굴하중과 거동을 비교 검토한다.
탄성지반상의 원형탱크해석에는 여러방법이 있지만 최근에 널리 사용되는 방법은 유한요소법이다. 그러나 이 방법은 탄성지반상의 탱크해석시 많은 절점수가 필요하게 된다. 이것은 곧 많은 계산기 기억용량 및 계산시간 뿐만 아니라 노력이 필요하게 된다. 본 연구에서는 유사탄성지반보(Analogy of Beam on Elastic Foundation) 및 지반강성행렬(Foundation Stiffness Matrix)을 이용하여 축대칭하중을 받는 축대칭탱크를 뼈대 구조화 할 수 있었다. 또한 이 뼈대 구조를 유한요소로 분할하고, 각 요소 강성행렬(Stiffness Matrix)을 전달행렬(Transfer Matrix)로 전환하여 전달행렬법으로 원형탱크를 해석 할 수 있었다. 유한요소법과 전달행렬법을 탄성지반상의 원형탱크 해석에 적용한 결과 두 해석결과의 차이는 없고, 전달행렬법을 적용한 경우 최종 연립방정식수가 4개로 간략화 되었다.
본 논문에서는 국제공동연구원 대형지진시험구조물의 강세진동시험결과 대한 상관해석와 지진응답해석에 관해 연구하였다. 지반-구조물 상호작용을 위해서 구조물과 근영지반은 유한요소로 모형화하고 원역지반은 무한요소로 모형화하는 직적법을 사용하였으며, 지진응답은 부분구조법에 근거한 파 입력기법을 사용하여 해석하였다. 시험후 상관해석을 통해 각 지반영역의 물성이 강제진동 시험에서 계측된 구조물 응답과 일치하도록 보정하였다. 보정된 지반물성을 초기 선형값으로 사용하고 등가선형화기법을 적용하여 지진에 관한 구조물의 응답을 예측하였다. 지반의 비선형거동을 고려하여 얻어진 구조물 응답은 계측된 결과와 매우 잘 일치한 반면, 초기 선형물성치를 사용한 응답결과는 상당한 차이를 보이고 있어서, 지반 비선형 거동의 영향이 중요함을 알 수 있었다.
힌지가 발생하는 철끈콘크리 트 갈조구조물의 비선형해석시에 부재강성값을 사용하는 새로운 방볍에 대한
연구이다 본 연구에서는 샤재의 비선형상태에서 힌 지영역의 접선강성을 평가히고 효율적으로 이용하는 방볍
을 제시하였다. 비선 형응답을 얻기위 해 고유벡터 활 이 용하는 해석법은 비선 형번위 에서 시각증분에 따라 강성
이 변하고 따라서 고유벡터 꾼도 그 변하는 수만큼 재산정 하여야 하기 때문에 일반적인 해석벙엮이 아니다
그 러나 무재의 비선형상태 를 나타내는 강성값, 즉 고유 벡터 의 산정횟수룹 줄 이며 산정된 기존 값을 적섣하게
재사용하여 해석의 효율성을 입 증 하였 다 지진하풍을 받는 첼 끈콘크리 트 꼴조구조 물의 비 선형 해석의 경제성
은 고유벡터 의 산정 횟수에 의존되기 때문에 고유벡 터의 산정 횟수플 감소시키며 신뢰성 있는 응답을 T 하여 관
해석법의 효율성을 입증하였다.
프리캐스트 콘크리트(P.C) 대형판 구조물은 일체식 현장타설 철근콘크리트 구조물에 비하여 보통 접합부에서 약한 강성을 가지고 있다. 그러나 일반적으로 실무에서 이러한 P.C대형판 구조물의 특성이 고려되지 않고 있으며 일체식 구조물에서와 동일한 해석모델을 사용하고 있는 실정이다. 따라서 이러한 모델을 사용하요 얻은 해석결과는 실제 P.C구조물에서의 발생하는 것들과 매우 상이할 수 있다. 본 연구에서는 이P.C구조물의 해석에 적합한 몇가지 유한요소모델을 시도해 봄으로써 수직접합부에 실제의 낮은 전단강성을 적용함으로 인해 발생하는 구조물에서의 힘과 응력분포 및 처짐의 변화를 관찰하여 보았다. 마지막으로 실부자들을 위해 수직접합부 전단강성의 영향을 감안한 단순화된 모델이 오차범위에 대한 이해를 전제로 하여 제안되고 있다.
When the SC structure is partially applied to a nuclear power plant building, an RC-SC connection part is generated between the SC wall and the RC slabs or RC walls. If the difference in flexural stiffness between the RC part and the RC-SC connection part is large, compressive failure of the concrete near the RC-SC connection part may occur. In this study, the flexural stiffness relaxation design such as the approach slab concept was applied and the fracture behavior was analyzed using finite element analysis. As a result, it was confirmed that concrete cracks near RC-SC connection part were reduced when flexural stiffness relaxation design is applied.
고강도 콘크리트 보의 극한상태의 거동을 강도에 따라 연구하였다. 13개의 보를 해석하고 그 결과를 제시하였다. 변수는 콘크리트의 압축강도로 범위는 57~184 MPa이며, 횡방향 철근비로 범위는0.35~1.49%이다. 실험에서 측정한 극한 비틀림 강도를 본 논문에서 제안한 값과 ACI 기준에 따른 값을 비교하였다. 그 결과 본 논문에서 제안한 이론에 의한 극한 비틀림 강도가 ACI 기준에 따른 값보다 더 좋은 결과를 보였다.
The purpose of this study is to present the new effective stiffness of special RC shear walls with flanges. ACI 318-99 adapt the different design provisions of effective stiffness between simple walls and walls with flanges. But domestic code makes no distinction between simple and with flanges walls. By the nonlinear analysis, maximum loads and displacement are calculated. Therefore the moment-curvature curve is calcultaed by the P-Δ curve. The stiffness ratios of cracked and uncracked section are calculated by the moment-curvature curves. And the stiffness ratios of simple walls and wall with flange are compared.
오늘날 층고 절감과 다양한 평면을 위해 플렛 플레이트 구조시스템의 사용이 증가하고 있다. 최근의 건물의 고층화와 층고제약 등으로 커플링보의 춤은 줄어들고, 요구 성능은 오히려 높아지고 있어서, 일반 형태로는 요구 성능을 만족시키기 어려운 실정이다. 따라서 커플링보의 슬래브 강성을 고려한 연구가 관심을 갖게 되었고 지속적인 연구성과가 나오고 있다. 하지만 기둥과 보의 강성에 의해 저항하는 라멘구조에서의 커플링보와 슬래브의 두께 및 유효폭에 맞춰 연구를 하였다. 따라서 슬래브 부분에서는 작은 변형에 의해 크랙이 발생하게 되고 이 원인으로 슬래브 강성 효과는 초기에 없어지는 것으로 나타났다. 하지만 검토 결과, 플렛플레이트 구조물에서의 커플링보에 대한 슬래브 강성비는 일반 라멘구조물과는 명확히 차이가 있다. 또한 코어 가장자리에 놓이는 커플링보는 일반적으로 모멘트 접합이 아닌 핀 접합으로 설계를 하게 되지만 슬래브 강성을 고려하여 구조적 거동을 명확히 분석하는 것이 필요한 것으로 판단된다. 따라서 이 연구에서는 플렛 플레이트 구조물의 슬래브 강성을 고려한 코어 가장자리에 놓인 RC, SRC 커플링보의 거동 및 구조 성능을 규명하고자 하였다.
최근의 건물의 고층화와 층고제약 등으로 커플리보의 춤은 줄어들고, 요구성능은 오히려 높아지고 있어서, 일반형태로는 요구성능을 만족시키기 어려운 실정이다. 이에 대한 대안으로 여러 가지 방법들이 연구되어지고 있으나, 구조기준과 이론적인 배경이 정립되어 있지 못하여 설계자가 적용하기에는 많은 어려움이 있다. 이 연구에서는 플렛 플레이트 구조물에서 사용되는 RC, SRC 커플링보 및 슬래브 두께를 조사하고 현실과 유사하게 유한요소해석 프로그램을 적용하여 슬래브 강성 효과를 고려한 커플링보의 구조 성능을 규명하고자 한다.