Purpose: This study aimed to identify research trends by applying the scoping studies method to articles published from the establishment of the Korean Society for Nursing Simulation in 2011 to June 2021, and to suggest the direction for future research. Method: A total of 73 articles were reviewed by applying the six steps and recommendations for scoping studies as suggested by Arksey and O'Malley. Results: Focusing on the subjects, research topics were classified comprehensively into the experience of nursing students, nurses, professors, and office workers. As a result of analyzing the research process characteristics, practical teaching and learning using simulation technology resources were conducted during most of the research, and a systematic curriculum for learning promotion was devised and applied. Furthermore, nursing performance ability was evaluated, learning situation was identified, and simulation education situation and necessity of clinical field were identified. The keywords “applied technology,” “teaching-learning method,” “environment,” “cognition,” “attitude,” “affect,” “patient status,” “nursing,” and “nursing performance” were identified as eight categories. Conclusion: The post-coronavirus era has provided an opportunity to expand the scope of Korean nursing simulation research, which is going to further contribute to nursing development.
Self-Powered Neutron Detector (SPND) is one of devices for in-core fluxes detecting without external electricity source. SPND consisted with emitter, insulator and collector. When neutrons reacted with emitter material, it generates electrons and these electrons cross insulator area to make electric signal in collector area. For calculating sensitivity of SPND with Monte-Carlo code such as MCNP, many physical components must be considered. Cobalt shows that prompt signal and relatively low signal comparing with other delayed signal SPNDs. Initial sensitivity was calculated as 4.28×10−22 A/nv-cm for one electron. Due to Cobalt’s complex decay chain and maintaining high efficiency of SPND, it is necessary to analysis the effect of activation of emitter. Therefore, the DPA (Displacements Per Atom) assessment and activation analysis of the detector components have been evaluated with MCNP 6.2 and ORIGEN-S. With these activation analysis results, that is expected to be used to determine the shielding thickness of the storage system.
Valves are one of the indispensable components in modern industry. Filling and de-pressure connectors in rocket valves used for space launch vehicles are very important parts for smooth fluid supply. For this reason, an optimized design that can improve efficiency, miniaturization, weight reduction, and safety of the valve at the same time is required. In this work, flow analysis and structural analysis were performed through 3D modeling using computational numerical analysis for open type filling and de-pressure valves. As results, the flow velocity and pressure distribution of the fluid were analyzed through the flow analysis of valve, and stress distribution was conducted in structural analysis. Through this study, it is consequently expected to provide valves of various specifications by performing production and performance test evaluation of development prototypes.
This study deals with replacement analysis of deteriorated equipment for improving productivity of production system. Frequent breakdown of the deteriorated equipment causes a situation that reduces productivity such as low product quality, process delay, and repair cost. However, the replacement of new equipment will be required a high initial investment cost, so it is important to analysis the economic feasibility. Therefore, we analyze the effect of the production system due to the aging effect of the equipment and the feasibility of equipment replacement based on the economic analysis. The process flow, working time, logistics movement, etc. are analyzed in order to build the simulation modeling for a ship and land switchboard production system. Using numerical examples, the economic feasibility analysis of equipment replacement through replacement of existing deteriorated equipment and additional arrangement of new facilities is performed.
In view of the growing need for clean energy, supercapacitors (SC), especially those based on activated carbon (AC) and organic electrolyte are attracting great attention for their theoretically infinite life span. However, they still age much faster than expected due to certain mechanisms. Several researches is being conducted to understand these mechanisms, but so far, the chemical reactions at the phase boundary of the activated carbon electrodes and organic electrolyte have been very unclear. Some pathways have not yet been investigated; there is no research on the reactions that can take place between acetonitrile in the vapor phase and the oxides presented on the surface of activated carbons. For this reason, in this study, divided into two parts, the first based on a thermal simulation and the second based on an experimental study, we have systematically described the ageing mechanisms by determining the gas-phase reactions that can occur at the electrode–electrolyte interface. On the one hand, a thermal model of a supercapacitor cell using activated carbon and organic electrolyte technology has been developed. This model allowed us to study the temperature distribution of supercapacitors, and thus to determine the thermodynamic parameters related to the phenomena produced at the electrode–electrolyte interface. On the other hand, a thermo-gravimetric analysis coupled with gas phase infrared spectroscopy on the activated carbons of an aged supercapacitor of the same technology as that used in the simulation was carried out. The results obtained made it possible to identify the chemical groups produced by ageing.
최근 자기공명영상 획득을 위한 시뮬레이션 도구가 개발되어 오랜 시간이 소요되는 임상 연구를 대체할 수 있게 되었다. 이에 본 연구에서는 MRiLab 시뮬레이션을 사용하여 부가인자인 에코 시간의 변화에 따라 경사에코 펄스 시퀀스가 적용된 뇌 T2 강조 영상을 획득하여 영상의 신호 및 노이즈의 변화를 정량적으로 평가하고 경향성을 파악하고자 한다. 이를 위해 실제 MRI 장비를 기반으로 새롭게 개발된 MRiLab simulation tool을 사용하여 모든 파라미터를 같게 고정한 후 TE만을 20~95 ms범위에서 5 ms 간격으로 각각 설정하여 경사에코 펄스 시퀀스가 적용된 뇌 T2 강조 영상을 획득하였다. 획득된 영상들의 신호 및 노이즈 특성 변화를 정량적으로 평가하기 위해 신호대잡음비 및 대조대잡음비를 측정하였다. 결과적으로, TE가 증가할수록 SNR은 감소하고 CNR은 증가하는 경향을 보였다. 이는 TE가 증가할수록 관심 영역으로 설정된 뇌척 수액 신호는 일정하게 유지되는 반면 노이즈는 증가하였으며, 백그라운드로 설정된 백질의 경우 신호가 감소함과 동시에 노이즈가 증가한 것이 원인으로 분석된다. 결론적으로, 진단에 용이한 경사에코 펄스 시퀀스가 적용된 뇌 T2 강조 영상을 획득하기 위해서는 그 목적에 따라 적합한 TE를 설정하는 것이 중요함을 확인하였다.
목적 : 3D 시뮬레이션을 통해 구현된 Gullstrand 모형안에서 눈의 광학적 특성을 분석하였다.
방법 : 시뮬레이션 프로그램인 SPEOS를 이용하여 Gullstrand 모형안을 모델링하였다.
결과 : 모델링된 모형안으로 입사된 평행광선은 모두 망막 앞에 결상하는 것으로 나타났으며, 이는 근사 없이 계산한 결과 및 일반적으로 잘 알려진 결과와 일치하였다. 평행광선의 입사 높이에 따른 초점심도를 분석한 결과 입사 높이에 따라 지수 함수 형태로 급격히 감소하였다. 또한 구면수차는 입사광선의 높이에 따라 비선형적으로 증가하였다.
결론 : 본 연구와 같이 생체적으로 접근이 어려운 눈의 광학적 현상은 시뮬레이션에 따른 결과 분석을 통해 이 해도를 좀 더 높일 수 있고, 눈의 다양한 광학적 현상에 적용될 수 있을 것으로 판단된다.
The purpose of this study is to analyze the adequacy of production capacity of the assembly process system of mobile bath vehicle’s top box panel and process design through a simulation analysis. Towards this end, the layout of the facility designed with pre-verification job using a simulation modeling and an experiment, and facility, logistics process, and personnel input method were made into a simulation model, and the design system’s adequacy was evaluated through an experiment. To produce 120 mobile bath vehicles annually, it was analyzed that 14 general workers and seven skilled workers were adequate through the experiment. It was also identified that three painting process lines carried out through outsourcing were adequate. Production lead time was 201.7 hours on average and it was 230 hours maximum. To meet customer delivery service level of 95% within the deadline when establishing a customer order and vehicle delivery plan, it was analyzed that more than 215 hours of lead time is needed minimum. If the process cycle time is reduced to 85% upon system stabilization and skillfulness improvement, it was analyzed that annual output of 147 vehicles can be achieved without additional production line expansion.
In turbopump type liquid rocket engines, ignition and starting are known to be the most unstable and risky section among all operating sections of the projectile. The operation of the liquid rocket engine is the process of ignition and combustion of the main combustor after the turbo pump is driven into a stable section due to the turbine driving of the turbo pump and the ignition and combustion of the gas generator by the pyro starter. In this process, the driving of related components directly influences each other, so each component must be operated with sufficient reliability. In particular, if the igniter does not supply sufficient ignition energy at a predetermined time, an explosion may occur due to stagnation of the fuel/oxidant mixture, so reliability is more important. In this study, the fracture analysis of the gas generator igniter rupture disk according to the shape was performed using computational analysis. As a result, comparative analysis was performed to obtain the optimal dimensions according to each variable condition.
In this study, in order of to reflect the mold deformation in the injection molding process to design of mold, the mold deformation was analyzed by performing flow and structural analysis. The 5 inch LGP(light guide plate) mold, platen and tie bar were modeled and applied to the analysis. The result of melt pressure from flow analysis was extracted for use as boundary conditions acting on the mold surface in the structural analysis. In order to evaluate the accuracy of simulation analysis results, injection molding was performed under the process conditions of simulation. As a results, the mold deformation during injection molding tends to be similar that of injection pressure, and it is confirmed that it shows the behavior and properties of melt resins. Compared with the simulation and experiment, the error of the maximum mold deformation in the injection phase was 4.20%.
The objectives of this study were to develop the optimal structures of recirculating aquaculture tank for improving the removal efficiency of solid materials and maintaining water quality conditions. Flow analysis was performed using the CFD (computational fluid dynamics) method to understand the hydrodynamic characteristics of the circular tank according to the angle of inclination in the tank bottom (0°, 1.5° and 3°), circulating water inflow method (underwater, horizontal nozzle, vertical nozzle and combination nozzle) and the number of inlets. As the angle in tank bottom increased, the vortex inside the tank decreased, resulting in a constant flow. In the case of the vertical nozzle type, the eddy flow in the tank was greatly improved. The vertical nozzle type showed excellent flow such as constant flow velocity distribution and uniform streamline. The combination nozzle type also showed an internal spiral flow, but the vortex reduction effect was less than the vertical nozzle type. As the number of inlets in the tank increased, problems such as speed reduction were compensated, resulting in uniform fluid flow.
Due to global climate change, mega-droughts have occurred frequently. Since long-term droughts make it difficult to secure the water resources, water supply needs to be restricted in a reasonable manner. In the event of limited water supply, the waterworks need to develop a restricted water supply strategy. This study showed that analyzing daily water supply could be used to respond to the first stage of a drought. According to an analysis of Korea's major water authorities, there was about 7~21% of room for daily minimum water supply in case of a drought. Restricting the water supply by lowering pressure is a good strategy for local water authorities with high water leakage rate since leakage is inversely dependent with pressure. For this method, it is necessary to quantify water deficiency and pressure at each node using a simulation. Since DDA-based software is not possible to predict changes in demand at nodes with pressure reduction, WaterGEMS, a PDA software, was used to quantitatively predict water shortages and pressures at each node. Locations where water is deficient need to install booster pumps or to be dispatched with water tank truck and bottled water. Without these support, lowering pressure could not be an option for water works. This paper suggests a method for waterworks to plan a drought by lowering pressure to restrict water supply using daily water supply analysis and PDA based simulation.
In this study, to improve the logistics flow of existing given chemical logistics warehouse, four logistics flow alternatives were proposed to minimize truck interference by building simulation model. The simulation model for chemical storage warehouse was built to evaluate system performance. Among the four new improved alternatives based on the basic model, the model with the same truck’s pathways and locations of facilities identified an increase in the number of interferences but a decrease in daily working hours as the number of resources in a particular facility increases. Therefore, the three groups were classified as ‘efficiency’, ‘complementary’, and ‘safety’ based on the daily working hours, and the ratio of trucks entering two types of logistics warehouse was set in consideration of future market fluctuations. For each of the six types, the optimal number of resources was selected as the number of resources in the facilities with the least number of interferences in the basic model and the evaluation measures and characteristics set in this study were compared and analyzed. As a result, the Alternative 4 model operating the underground roadway produced interference between 17.0% and 36.4% of the basic model, with 113.3% of the interior loadspace.