검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 36

        21.
        2016.12 KCI 등재 서비스 종료(열람 제한)
        Insulation materials used for building save energy and can be classified into inorganic and organic materials. Organic insulation emits toxic gases in a fire annd has lower water resistance. Inorganic insulation is heavy and has poorer thermal performance than that of organic material. This study evaluated the physical properties and fire resistance of lightweight inorganic insulation foaming material made of waste glass powder. The test results showed that the inorganic material performed well with low density and low thermal conductivity for an insulation material. Foam insulation material manufactured from glass powder was sufficient as a fire-resistant product.
        22.
        2016.11 서비스 종료(열람 제한)
        최근 원자재 가격 상승 및 자원부족 문제가 높아지면서 자원의 희소성과 특정 국가의 생산 집중도가 높아 자원보유국의 무기화 경향으로 인해 자원에 대한 공급 불안정은 점차 증가되고 있다. 이에 전 국가적으로 자원의 확보를 위해 자원순환에 대한 관심은 점점 높아지고 있으며, 특히 매년 발생되는 폐기물을 자원화 하는 폐기물 재활용 정책이 강화되면서 재활용에 대한 관심과 기술개발에 대한 활성화가 더욱더 필요한 전망이다. 우리나라는 대부분 광물자원을 대부분 수입(약 97%)에 의존하고 있기 때문에 더욱더 재활용에 대한 산업이 증가되고 있지만 폐기물 자체도 수입에 의존하고 있어 국제 협약과 관련되어 폐기물 수출・입 시 부정적 관리나 유통되는 부분에 대한 관리실태 파악과 국내에서 처리된 폐기물의 물질별 흐름파악이 필요하게 되었다. 수출・입 폐기물 중 국내에서 금속 회수를 위한 재활용량이 가장 높은 폐납산배터리를 선정하여 재활용에 대한 관리실태 파악 및 수출・입 실태를 조사하여 재활용된 폐납산배터리의 물질흐름도에 대해 조사하였다. ‘15년 국내 자동차 등록 대수는 2천만 대 이상이며, 국내등록양이 년 100∼130만대 이상이 증가되고 있다. 국내에서의 발생되는 폐납산배터리는 자동차 노후배터리 교체 및 폐차로 인해 주로 발생되며, 일부 산업용 배터리와 배터리 제조회사의 불량품 및 수입제품의 완구류에서 적은 양이 매년 국내에서 발생되고 있다. 해외에서의 자동차 및 산업용 폐납산배터리의 수입량은 매년 증가되고 있으며, ‘15년 기준 410천톤 이상 국내로 수입되어 재활용 처리되어지고 있다. 그러나 국내로 수입되어 재활용 처리되면서 회수되는 금속자원 및 기타자원에 대한 통계가 명확하게 파악되지 못하고 있다. 본 연구는 국내로 수입되는 폐납산배터리의 재활용 회수 기술 등을 조사하고 수출・입 및 국내 발생량을 산정하여 국내에서 소비 및 수출되는 연괴(납: Pb)의 양과 폐납산배터리를 재활용하여 회수된 폐금속자원 등의 물질흐름을 파악하여 국내에서의 연간 폐납산배터리의 발생량을 추계하고 납산배터리의 재활용을 통한 국내 금속자원 등의 국내 물질별 흐름도 및 국내 대체율(Replacement rate)을 조사하였다.
        23.
        2016.11 서비스 종료(열람 제한)
        수은은 온도계, 혈압계, 치과용 아말감, 전지, 형광등과 의약품 등 많이 사용되고 산업적으로도 전기 스위치, 촉매 등으로 중요하게 사용된다. 수은은 증기 흡입 시 폐렴을 유발하고 중추신경계와 신장에 영향을 줄 수 있을 정도로 매우 위험하여 수은과 수은 화합물의 사용이 금지되거나 제한을 받고 있으며, 대체물질과 대체 공정의 개발을 위한 노력이 행해지고 있다. 최근 연이은 병원, 학교 등의 혈압계, 온도계의 수은 누출사고와 형광등 생산시설인 (주)남영전구 광주공장의 해체 및 철거 중 수은 누출로 인한 근로자의 수은 중독 및 환경오염 사고와 비철금속업체의 수은 폐기물 처리문제가 대두되었다. 전국 병원 2,500개소 설문조사 결과, 143개 병원에서 혈압 및 체온계의 약 4천여개(수은량 : 약 140 kg)가 회수와 폐기가 필요한 것으로 조사되었다. 또한 미나마타 협약에서 요구되는 수은 수출・입, 공급원 파악, 임시보관 및 유통・보관, 회수, 처리 등 단계별 수은의 회수, 유통, 관리에 대한 체계 구축이 미흡하다. 수은폐기물은 미나마타협약에 의하여 ‘수은 구성 폐기물’, ‘수은 함유 폐기물’, ‘수은 오염 폐기물’로 나눠지고 본 연구에서는 ‘수은 함유 폐기물과 오염 폐기물’의 수입, 유통, 회수, 폐기 등 전과정 단계별 흐름 분석을 통하여 수은의 국내 흐름을 파악하고 관련 법 제도의 문제점을 분석하고자 함에 있다. 또한 수은 관련 유통량을 조사하고 폐기물의 처리 공정을 파악하여 대상 물질, 원료 사용량, 시스템 경계 설정, 데이터 수집 및 분석, 계산과 검증 등의 절차를 걸쳐 물질수지에 근거하여 ‘물질흐름도’를 작성하여 도출하였다. 물질흐름분석을 보다 쉽게 활용하고 적용할 수 있도록 ‘물질흐름분석 소프트웨어(STAN 2.5)를 활용하여 공정 내의 데이터 유입과 유출을 Shankey diagram 형태로 표현하였다. 연구 결과, 원자재 수은의 국내 유통량은 2014년 기준 국내 유입량은 약 3톤(제조량: 1 ton, 수입량: 2 ton)으로 집계되고 수입된 수은은 대부분 형광램프 제조(2.01 ton), 시약(0.76 ton), 촉매(0.12 ton) 등의 용도로 사용된 것으로 나타났다. 회수량은 문헌 조사 결과 수은 함유 부산물 및 폐기물 관리를 위해 도입되는 시나리오별 두 가지 기준을 적용하여 회수 가능량을 추정하였다. 시나리오에 따라 27.3 ton/yr, 25.4 ton/yr으로 예측하였다. 원자재 수은의 국내 재고량은 대략 0.5 ton/yr으로 보인다.
        24.
        2016.07 KCI 등재 서비스 종료(열람 제한)
        In this study, the recycling processes of construction and demolition waste (C&D waste) were analyzed, and its national recycling rate was determined using material flow analysis (MFA). Available statistical data provided by Ministry of Environment and Korea Environment Corporation were used for the MFA study. The collected data were carefully examined and validated by field investigations. System boundary for MFA covered from waste generation from construction sites to final disposal in 2013. The field investigation showed that recycled aggregate is produced through mechanical shredding, separation, and screening processes of C&D waste. The production efficiency (or process yield) was estimated to be approximately 81.2% on average. The foreign materials in the waste accounted for 18.8% by weight. The separated impurities were sent to recycling facilities, incineration facilities, or landfill sites, depending on the physicochemical characteristics. Efficiency of recycling facilities and the statistical data were integrated to estimate the national actual recycling rate, which turned out to be 87.7% in 2013. Approximately 49.1% of the construction-related waste was recycled as recycled aggregate for concrete production and road base layer for asphalt pavement. Based on the result of MFA, there is 9.8% difference between the actual recycling rate in this study and reported recycling rate by national statistics. In the future, more various C&D waste treatment and disposal facilities, along with aggregate recycling facility, should be investigated to verify the actual recycling rate determined by this study. Statistical accuracy should be further refined through additional field investigations. Our findings can be applicable to development of recycling policies and best management practices for C&D waste streams.
        25.
        2016.04 KCI 등재 서비스 종료(열람 제한)
        In this study we conducted a material flow analysis (MFA) of the four major types of waste electrical and electronic equipment (WEEE), namely refrigerators, TV sets, washing machines, and air conditioners, based on the most reliable data available from the Eco-Assurance System, other governmental sources, the literature, a field survey, and interviews. A MFA of six major components, iron, copper, aluminum, plastics, precious metals, and rare metals was also conducted. The estimated total generation of WEEE in 2013 amounted to 401.8 thousand tons, of which 3.8% (or, approximately 5% including printed circuit boards) was exported and 55.0% was recycled. The collection by the formal take-back system occupied 34.6% of the total generation, from which 83.9% was recovered as valuables. The six major components amounted to 299.7 thousand tons, among which 89.8% of iron, 91.4% of copper, 56.0% of aluminum, 27.1% of plastics, 37.1% of precious metals, and 6.2% of rare metals were recovered. A high positive correlation was found between the amount of WEEE flowing into the private recycling business and its economic value. Since the recovery ratio in the private sector was estimated to be much lower, while the potential environmental impact was higher, an optimal strategy was identified to enhance the collection by the public sector. Providing economic incentives should be an effective means to encourage private collection through the formal take-back system.
        26.
        2015.04 KCI 등재 서비스 종료(열람 제한)
        The government of each country is making a policy of expanding recycling of wastes and waste-to-energy to mitigate the greenhouse gas emissions to cope with climate change. This paper attempts to analyze the economic effects of waste disposal & materials recycling services (WDMRS) sector using 2012 input-output (IO) table published in 2014. To this end, we deal with three sectors: waste disposal, materials recycling services, and WDMRS sectors. More specifically, the production-inducing effect, value-added creation effect, and employment-inducing effect of the WDMRS sector are investigated based on demand-driven model. The supply shortage effect and the price pervasive effect are also examined employing supply-driven model and Leontief price model, respectively. The results show that the production or investment of 1.0 won in the WDMRS sector induces the production of 1.9324 won and the value-added of 0.7217 won in the national economy. Moreover, the production or investment of 1.0 billion won, supply shortage of 1.0 won, and a price increase of 10.0% in the WDMRS sector touch off the employment of 15.2462 persons, production loss of 2.0589 won, and an increases in overall price level by 0.0699%, respectively. This quantitative information can be usefully utilized inassessment of the WDMRS sector-related investment and policy.
        27.
        2015.04 KCI 등재 서비스 종료(열람 제한)
        Environmental regulations on the management of waste electrical and electronic equipments (WEEE) have been strengthened in many developed countries. Improper management and disposal of such waste, especially in informal sectors, may pose serious threats to the environment and human health. In Korea, there are very few available statistical data regarding distribution flow and treatment of WEEE in informal sectors (i.e., unreported private collection and recycling facilities). In order to provide additional measures related to proper management of WEEE, there is an urgent need for a quantitative material flow study on the amount of the waste found in the sectors. This can be achieved by conducting a statistical analysis of the flow of WEEE in the sectors and by drawing significant results and implications of such analysis. In this study, the relevant data were collected from literature review and a number of field site visits to informal private collection and recycling sites with survey in Daejoen Metropolitan City. Statistical analysis of the survey related to the distribution of WEEE in informal sectors was conducted to determine the quantitative flow of WEEE in the sectors. According to the results of this study, 3.38 kg/person/year were introduced into informal sectors in 2013, while 2.48 kg/ person/year was recycled in formal sectors in 2012. This study implies that there are significant amounts of WEEE that are present and processed in the sectors, which are not regulated by government. Small private collectors of WEEE in informal sectors received approximately 60.6 unit/month on average. The results of this statistical study indicate that there are no significant differences among the factors such as the amount of treatment, the number of employee, and the degree of dismantle process. However, there is significant difference among the WEEE category large home appliance, small-sized home appliance, and audio-video equipment. Further study may be warranted to focus the flow of WEEE in informal sectors in more large scale in order to accurately determine the final destination and disposal of such waste in the environment.
        28.
        2015.01 KCI 등재 서비스 종료(열람 제한)
        Food waste, a putrescible form of waste, comprised of 30% of the total municipal solid waste stream in Daejeon Metropolitan City (DMC) in 2012. Proper management of food waste is a challenging task for local government. This study was conducted to determine material flows when treated food waste in various recycling facilities. Material flows in the recycling processes were collected by site surveys, field trips and discussion with operators and governmental employees. Material flow analysis (MFA) was conducted to quantify the flow of food waste from generation to disposal for the year 2012. MFA along with its mass transfer coefficients were determined based on the inputs, outputs and waste fluxes. According to the mass transfer coefficient results, treatment efficiency for the dry and wet feed manufacturing facility was found to be higher than other treatment facilities. Water consumption was higher for the composting site, resulting in large volume of wastewater (mass transfer coefficient 1.539). While large amounts of screening materials such as plastic, chopsticks, aluminum foils, and bottle caps were generated at the composting site, mass transfer coefficients (0.312) at the dry and wet feed facility were relatively high, implying effective treatment of food waste occurring. The results of this study help to facilitate waste management policy decision-makers in developing effective food waste management techniques in DMC.
        29.
        2014.04 KCI 등재 서비스 종료(열람 제한)
        This paper presents the estimation of actual recyclable amounts and the evaluation of waste oil recycling processes atrecycling facilities using material flow analysis (MFA). The estimation of actual recycling rates through the processes ofwaste lubricating oils is a very important subject not only in the point of view oil recycling efficiency by energy conversionprocesses but also in the perspective of the recycling technology level. In this study, the recycling processes and recyclingrates of waste lubricating oil recycling facilities were evaluated by using a MFA approach, a total of 10 site visits anda total of 30 site questionnaires in Korea. The MFA methodology based on mass balance approach applied to identifythe inputs and outputs of waste oils during the recycling processes at waste oil recycling facilities. It is necessary todetermine the composition and flows of the input materials to be recycled and foreign substances in a waste recyclingfacility. A complete understanding of the waste flows in the processes along with the site visit and data surveys for therecycling facilities was required to develop a material flow for the processes and determine the process yield by differenttreatment methods (chemical distillation, vacuum distillation and high temperature pyrolysis). The results show that onaverage the process yields for chemical distillation, vacuum distillation, and high temperature pyrolysis were 89.9±7.7%,77.9±16.1%, and 57.9±9.3%, respectively. During the chemical distillation method, water in waste oils was a majorfraction (>50%), while the vacuum distillation method resulted oil large amounts of oil sludge produced during therecycling process. The process yields for different treatment methods depended upon several factors including the qualityof incoming waste oils, the type and operating conditions of recycling processes that are applied to. Based on the materialflow analysis in this study, the actual recycled amount of waste oil was estimated to be approximately 260,809 ton in 2011.
        30.
        2014.03 KCI 등재 서비스 종료(열람 제한)
        There are many stringent environmental regulations on the management of waste electrical and electronic equipments(WEEE) in most developed countries. WEEE directive aims at increasing collection and recycling rate of WEEE whereas,while the restriction of the use of certain hazardous substances (RoHS) aims at restricting hazardous materials duringthe production of electrical and electronic equipment (EEE). TV housing rear covers consist of small portion of brominatedflame retardants (BFRs). Improper management and disposal of such waste can pose impacts on the environment andhuman health. In Korea, there are very few available statistical data regarding BFRs levels in TVs housing rear covers.In order to provide additional measures related to management of BFRs, there is a need for a quantitative material flowstudy on the amount of BFR found in TVs. This can be achieved by the aid of material flow analysis of the TV setsand by studying the Deca-BDE components present in the TV housing read covers. In this study, the relevant data werecollected from the statistical reports and through field site visits to the WEEE recycling facilities with surveys. Staticand dynamic material flow analysis (MFA) was conducted to determine material flow of BFRs (Deca-BDE) in themanagement of waste TVs. According to this study, in 2011, households in Korea use 73,821ton of TV sets of which23,592ton of waste TV sets were collected and recycled by municipalities and producers. Extended ProducerResponsibility (EPR) played a major role in recycling of WEEE. In this study, it was predicted that Deca-BDE in usestage would reach down to 51.73ton by 2016. In addition, the amount of Deca-BDE present at the disposal and recyclingstage is estimated to be approximately 2.45ton by 2018.
        31.
        2013.04 서비스 종료(열람 제한)
        The purpose of this study is to evaluate bond strength between sulfur polymer coating material and old concrete. Two kinds of spray casting methods are selected and compared to its bond strength by conducting bond test and measuring available casting time. As a result, the bond strength and available casting time is considerably depends on spray casting method.
        32.
        2013.03 KCI 등재 서비스 종료(열람 제한)
        This paper presents the actual recycling rates and recycling processes of waste plastic recycling facilities using material flow analysis. Determination of actual recycling rates through the processes of waste plastics is a very important subject not only from the point of plastic recycling efficiency energy conversion but also from the perspective of the recycling technology level. In this study, the recycling processes and recycling rates of waste plastic recycling facilities were evaluated by the MFA analysis based on 14 site visits and 25 questionnaires. The MFA methodology based on mass balance approach applied to identify the inputs and outputs of recyclable plastic materials in the recycling processes at recycling facilities. It is necessary to determine the composition and flows of the input materials to be recycled in a recycling facility. A complete understanding of the waste flows in the processes along with the site visit and data surveys for the recycling facilities was required to develop a material flow for the processes and determine the actual recycling rate. The results show that the average actual recycling rates for the recycling facilities by the site visit and the questionnaire was found to be approximately 87.5 ± 7.1% and 84.3 ± 14.5%, respectively. The recycling rates depended upon several factors including the quality of incoming waste plastics, the type and operating conditions of recycling processes, and the type of final products. According to the national statistics, the recycling rate of waste plastics was about 53.7%, while the actual recycling rate at national level was estimated to be approximately 45.1% by considering the recycling performance evaluated as well as the type of recycling process applied. The results of MFA for the recycling processes served as a tool to evaluate the performance of recycling efficiency with regard to the composition of the products during recycling. They may also support the development of the strategy of improvement of recycling processes to maximize resource recovery out of the waste plastic materials.
        1 2