검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 134

        42.
        2019.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구에서는 녹말(starch)과 poly(acrylonitrile) (PAN)으로 이루어진 가지형 공중합체 기반의 슈퍼 캐퍼시터용 전해질막을 손쉽게 제조하는 방법을 제시하였다. 가지형 공중합체(starch-g-PAN)는 세륨 이온에 의해 개시된 자유 라디칼 중합을 통해 합성되었다. 실온에서 어떠한 유기용매 없이 Starch-g-PAN 고분자를 이온성 액체, 1-ethyl-3-methylimidazolium dicyanamide (EMIM DCA)에 용해하였으며 1시간 동안 100°C의 고온을 가해줌으로써 손쉽게 고분자 막을 만들었다. 제조된 막은 유연하여 플렉서블 고체 슈퍼 캐퍼시터의 전해질에 적용되었다. Starch-g-PAN 기반의 고분자 전해질막을 사용한 슈퍼 캐퍼시터는 0.5 A/g의 전류 밀도에서 약 21 F/g의 정전용량을 가졌으며 10,000 사이클 동안 86%의 유지율을 보이며 높은 주기 안정성을 보였다. 본 연구를 통해 starch-g-PAN 기반의 고분자 전해질막이 우수한 성능을 가진 플렉서블 고체 슈퍼 캐퍼시터에 응용될 수 있음을 확인하였다.
        4,000원
        46.
        2019.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        염료감응형 태양전지는 지속 가능한 에너지원으로서 많은 관심을 받고 있다. 염료감응형 태양전지의 효율과 장기 안정성은 전극 물질과 전해질에 의해 크게 영향을 받는데 본 총설에서는 전해질에 초점을 두어 서술하고자 한다. 고분자 전해질막은 염료감응형 태양전지에서 기존의 액체 전해질을 대체하기 위한 대안으로 제시되어 왔다. 기존의 액체 전해질은 높 은 효율을 나타낼 수 있지만 장기적인 안정성 문제와 누액 문제로 인해 고분자 전해질막에 관한 관심은 지속적으로 증가하고 있으며 매년 이와 관련된 논문들이 활발히 보고되고 있다. 본 총설은 염료감응형 태양전지를 위한 고분자 전해질막의 개념과 개발에 대한 간단한 설명을 다루고 있으며 고분자 매트릭스의 개질, 유-무기 가소제 및 이온성 액체와 같은 첨가제의 도입에 따른 염료감응형 태양전지의 효율과 전기화학적 특성에 대해서도 최근의 연구들이 정리되어 있다.
        4,000원
        47.
        2019.03 KCI 등재후보 구독 인증기관 무료, 개인회원 유료
        3-부티닐-p-톨루엔술포네이트를 이용한 2-에티닐피리딘의 무촉매중합을 통하여 이온성 전도성 고분자를 합성하였다. 합성 고분자의 분자구조는 IR, NMR, UV-visible 분광분석기로 확인하였다. 공액구조 주사슬 고분자의 특징적인 π → π* 전이에 기인하는 약하면서도 완만한 흡수 피크를 800 nm까지 보여 주었다. 합성한 고분자의 전기화학적 특성과 전기광학 특성을 측정하고 분석하였다. 이 고분자는 도핑과 탈도핑 사이에서 매우 안정한 비가역 전기화학적 거동을 보였다.
        4,000원
        48.
        2019.02 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Supercapacitors are attracting much attention in sensor, military and space applications due to their excellent thermal stability and non-explosion. The ionic liquid is more thermally stable than other electrolytes and can be used as a high temperature electrolyte, but it is not easy to realize a high temperature energy device because the separator shrinks at high temperature. Here, we report a study on electrochemical supercapacitors using a composite electrolyte film that does not require a separator. The composite electrolyte is composed of thermoplastic polyurethane, ionic liquid and fumed silica nanoparticles, and it acts as a separator as well as an electrolyte. The silica nanoparticles at the optimum mass concentration of 4wt% increase the ionic conductivity of the composite electrolyte and shows a low interfacial resistance. The 5 wt% polyurethane in the composite electrolyte exhibits excellent electrochemical properties. At 175 ℃, the capacitance of the supercapacitor using our free standing composite electrolyte is 220 F/g, which is 25 times higher than that at room temperature. This study has many potential applications in the electrolyte of next generation energy storage devices.
        4,000원
        49.
        2019.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구에서는 titanium nitride (TiN) 나노 섬유와 poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOTPSS) 전도성 고분자로 이루어진 전극과 poly(vinyl alcohol) (PVA) 기반 고분자 전해질 분리막을 이용하여 슈퍼 캐퍼시터를 제조하였다. TiN 나노 섬유의 경우 높은 전기 전도도와 이차원적 구조로 인한 스케폴드 효과를 기대할 수 있다는 점에서 전극 물질로 사용되었다. PEDOT-PSS 전도성 고분자는 수소 이온과 산화-환원 반응을 통해 보다 높은 정전용량을 나타낼 수 있으며 용액상에 분산이 용이해 유무기 복합제를 형성하기에 적합하였다. PVA 기반의 고분자 전해질 분리막은 기존의 액상의 전해질의 문제인 외부 충격에 대한 안정성을 확보할 수 있으며 염으로 사용된 H3PO4의 경우 수소 이온은 빠른 확산으로 인해 캐퍼시터의 충방전 효율에 이점이 있다. 본 연구에서 보고된 PEDOT-PSS/TiN 슈퍼캐퍼시터의 정전용량은 약 75 F/g으로 기존의 탄소기반 캐퍼시터에 비해 큰 폭으로 증가한 값이다.
        4,000원
        50.
        2018.11 구독 인증기관·개인회원 무료
        Saline water electrolysis (SWE) is an electrochemical technology to directly generate valued chemicals such as chlorine gas (Cl2), hydrogen (H2), and sodium hydroxide (NaOH) by applying electric energy. The key materials in SWE are cation exchange membranes with high selectivity to sodium ions under chemically harsh SWE conditions. The representative SWE membranes are perfluorinated double layered membranes composed of perfluorinated sulfonic acid layer and carboxylic acid layer to transport sodium ions rapidly and to prevent the passage of hydroxide ions, respectively. The commercially available membranes are, however, suffering from delamination issues occurring in their interface. In this presentation, delamination-free membrane fabrication processes will be addressed.
        51.
        2018.05 구독 인증기관·개인회원 무료
        고온형 고분자 전해질 막 연료전지 (HT-PEMFC)는 100°C 이하의 저온 고분자전해질 운영 시스템에 비해 개선된 전극 반응 동역학, 뛰어난 물 및 열 관리, 연료 불순물에 대한 내성 및 폐열 이용과 같은 많은 이점을 제공한다. 그러나 HT-PEMFC는 구동 중 발생하는 물의 증발과 함께 분리막 내 인산이 증발하여 성능이 낮아진다는 단점이 있다. 때문에 본 연구에서는 이러한 인산의 유출에 대한 핫 프레스 유무, 전극 GDL 종류, 분리막 가수분해 조건, 셀 성능에 따른 영향을 인산의 비색정량을 통해 분석하였다. 그 결과 인산의 유출량은 주로 셀성능에 영향을 받으며 GDL이 치밀할수록 억제됨을 확인하였다.
        52.
        2018.05 구독 인증기관·개인회원 무료
        이산화탄소 전환 기술은 이산화탄소를 원료로 유용한 화합물을 생산하는 기술로서 지속적인 탄소원의 활용 및 고부가 가치의 화합물 생산을 통한 이익 창출이 가능하다. 다양한 이산화탄소 전환 기술 중에서도 전기 에너지를 이용한 이산화탄소 전환 기술은 유용 화합물 생산 외에도 신재생에너지 저장 기술로 활용할 수 있어서 최근 그 중요성이 부각되고 있다. 그러나 열역학적으로 안정한 이산화탄소의 환원 반응은 많은 에너지를 필요로 하므로 기술의 경제성 확보 및 실질적인 탄소 중립을 구현하기 위해서는 생성물에 대한 높은 선택성을 가지는 촉매 개발 및 효율적인 반응 시스템 개발이 필수적이다. 본 연구에서는 고분자 전해질 막을 이용하여 전기화학적 이산화탄소 전환을 통해 개미산염을 제조하였다.
        53.
        2018.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, the compound Li3BO3 (LBO) is intended to be prepared by a polymeric complex method as a sintering aid for the densification of Li7La3Zr2O12 (LLZ) solid electrolyte. A polymeric precursor containing Li and B is heat-treated in an air atmosphere at a temperature range between 600℃ and 800℃. Instead of LBO, the compound Li2+xC1-xBxO3 (LCBO) is unexpectedly synthesized after a heat-treatment of 700℃. The effect of LCBO addition on sintering behavior and ion conductivity of LLZ is studied. It is found that the LCBO compound could lead to significant improvements in the densification and ionic conductivity of LLZ compared to pure LLZ. After sintering at 1100℃, the density of the LLZ-12wt%LBO composite is 3.72 g/cm3, with a high Li-ion conductivity of 1.18 × 10-4 Scm-1 at 28℃, while the pure LLZ specimen had a densify of 2.98 g/cm3 and Li-ion conductivity of 5.98 × 10−6 Scm-1.
        4,000원
        54.
        2018.01 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The demand for energy storage devices capable of operating at high temperatures is increasing. In order to operate at high temperatures, a device must have excellent thermal stability and no risk of explosion. Ionic liquids are electrolytes that satisfy the above conditions, and studies on improving their performance have attracted great interest. Here, we report the results of a study on the fabrication of a supercapacitor that has a composite electrolyte prepared by dispersing fumed silica in an ionic liquid. The fumed silica filler exhibits improved ionic conductivity and lower interfacial resistance. In particular, the silica nanoparticles with diameters of 10 nm exhibit better electrochemical properties than fillers of other diameters and have excellent device performance of 33 times higher than the pristine ionic liquid at high temperatures. This study can be used to improve the electrolytes of electrochemical devices, such as the next generation battery or lithium ion battery.
        4,000원
        55.
        2017.11 구독 인증기관·개인회원 무료
        Polymer electrolyte membrane (PEM) is one of key elements to determine both electrochemical performances and lifetimes of fuel cell electric vehicles (FCEVs). PEM is exposed to a variety of dynamic stimuli (e.g., temperature, humidity, pressure, fuel gases and so on) under their operation conditions and meets unavoidable mechanical damages derived from unequal pressure difference between anode and cathode feed gases. Even though there have been approaches to evaluate the mechanical strength of PEM materials, most of the trials could provide static information on their mechanical strength. In this study, a pressure-loaded blister hybrid system connected with gas chromatography was developed to disclose the efficacy of the system as an evaluation tool of dynamic PEM strength under realistic FCEV operation conditions.
        56.
        2017.05 구독 인증기관·개인회원 무료
        고분자 전해질막은 수화상태에서 이온전달채널을 형성하여 연료전지 시스템내에서 수소이온을 전달하는 핵심적인 역할을 한다. 저가습 상태에서는 효과적인 이온전달이 잘 이루어지지 않는 것으로 보고되며, 친수성 및 소수성 영역의 명확한 상분리가 일어나는 불소계 고분자 전해질 막에 비하여, 탄화수소계 고분자 전해질 막에서는 이러한 상분리 현상이 상대적으로 약하게 일어나고, 그 결과로 낮은 수소이온 전도도를 갖는 것으로 알려져 있다. 본 연구에서는 이러한 낮은 수소이온 전도도를 분자 구조 측면에서 규명하기 위하여, 분자전산모사를 통해 가습 상태 변화에 따른 함수율 조건을 이용하여 고분자 전해질막 모델을 만들고, 이를 서로 비교하여 이온전달 채널의 형성에 어떤 요소들에 영향을 미치는지 규명 하고자 한다.
        57.
        2017.05 구독 인증기관·개인회원 무료
        Dimensional stability of polymer electrolyte membrane stands out always important issue as well as proton conductivity. The reinforced membrane can be a good solution to enhance the dimensional stability for not only perfluorosulfonic acid polymer but also hydrocarbon based polymer. In this study, we have prepared nanofiber reinforced polymer electrolyte membranes for proton exchange membrane fuel cells. The nanofiber reinforced PEMs was impregnated by introducing hydrocarbon polymer electrolytes into web-like substrate. Due to high porosity and the intrinsic structure of reinforced PEMs, dimensional stability are improved without sacrificing membrane performance. Consequently, reinforced PEMs exhibited higher physical properties than unreinforced PEMs.
        58.
        2017.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        연구에서는 고분자전해질 연료전지(PEMFC)의 전해질막의 성능향상을 위하여 sulfonated graphene oxide (sGO)와 Nafion을 이용하여 복합막을 개발하였다. sGO/Nafion 복합막 안의 sGO의 균일한 분산을 위해 각기 다른 용매를 사 용한 sGO 분산액과 Nafion 현탁액을 혼합하여 복합막들을 제조하였다. 제조된 복합막들의 물성 및 전기화학적 특성을 평가 하기 위해 SEM, FT-IR, 이온 전도도, 이온 교환 용량, 함수율, 열안정성 등을 수행하였다. 연구 결과 ODB와 DMAc 혼합 용 매로 sGO를 분산하여 고분자 용액 내에서의 분산도를 향상시켰으며, 이 결과 11 wt%의 낮은 함수율에도 불구하고, 0.06 S cm-1의 기존 연구와 유사한 이온 전도도를 나타내었다.
        4,000원
        59.
        2016.12 구독 인증기관 무료, 개인회원 유료
        1,2-디브로모에탄을 이용한 2-에티닐피리딘의 무촉매중합을 통하여 이온성 전도성 고분자를 높은 수율로 합 성하였다. 합성한 고분자의 분자구조를 여러 가지 분석장비로 측정한 결과 설계한 N-(2-브로모에틸)피리디늄 브로마 이드를 갖는 공액구조 고분자임을 확인할 수 있었다. 이 고분자의 UV-Visible스펙트럼에서는 800 nm 까지 흡수 피 크를 보여주는데, 이는 공액구조 고분자의 π→ π* 전이에 기인한 것이다. 아울러 고분자의 전기전도도 및 전기광학 특성을 측정하고 분석하였다. 이 고분자는 도핑과 탈도핑 사이에서 매우 안정한 비가역 전기화학적 거동을 보였다.
        4,000원
        60.
        2016.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        연료전지는 친환경적 에너지 발생원으로 미래의 에너지 부족 문제와 공해 문제를 한꺼번에 해결하기 위한 방법으 로 최근 그 연구가 활발히 진행되고 있다. 연료전지는 별도의 발전 장치를 필요로 하지 않고, 수소와 산소의 반응에 의해 전 기를 직접 생산하기 때문에 발전 효율이 높다. 연료전지 시스템에서의 핵심 기술은 고분자 분리막을 제조하는 것으로써 상용 화된 나피온 전해질막은 제조 단가가 높고 고온에서 성능이 급감한다는 단점이 있다. 따라서 많은 학자들이 나피온 전해질 분리막을 대체하기 위한 연구가 활발히 진행되고 있다. 본 총설에서는 연료전지용 전해질 분리막의 특허 및 논문의 기술 경 쟁력 평가를 통하여 국가별, 기관별, 기업별 발표 빈도수를 정리하였으며, 고분자 전해질 연료전지, 직접 메탄올 연료전지, 그 리고 알칼리 연료전지에 대한 평가를 진행하였다.
        4,600원
        1 2 3 4 5