고분자를 기반으로 하는 고체 전해질은 수퍼커패시터, 배터리, 센서, 액추에이터 등 다양한 전기화학 소자에 응용이 가능한 소재로써, 기존 고분자 전해질의 낮은 이온전도도를 향상시키기 위해서 다양한 이온성 액체 기반의 고체 전해질에 관한 연구가 활발히 진행 중에 있다. 이온성 액체의 높은 전기적 특성 및 전기화학적, 열적 안정성과 고분자의 우수한 기계적인 강도를 활용한 젤 상태의 고체 전해질인 이온젤은 차세대 웨어러블 및 플렉시블 전자소자에 응용되어 연구되고 있다. 따라서 본 연구에서는 이러한 이온성 액체와 고분자 기반의 고체 전해질을 제조하고 특성을 분석하여 탄소나노복합체 기반의 전극 에 적용하여 다양한 전자소자에 응용이 가능한 이온전도도 및 안정성이 향상된 이온성 액체 기반의 고체 전해질을 개발하고자 한다. 제조된 고체전해질은 전기화학적 임피던스법을 이용하여 이온 전도도를 측정 하여 보았으며 이온성 액체를 첨가하여 제조한 고체전해질의 이온 전도도가 1.26 x 10-1 S/cm 로 확인 되었다. 또한 제조된 고체 전해질을 이용하여 전고체형 수퍼커패시터를 제조하여 전기화학적 특성을 비교 하여 보았으며, 수퍼커패시터의 전기화학적 특성 역시 이온성 액체를 첨가하여 제조된 고체 전해질을 사 용하였을 때 향상된 전기화학적 특성을 나타내었다.
A zinc-air battery is one of most promising advanced batteries due to its high specific energy density, low cost, and environmental friendliness. However, zinc anodes in zinc-air batteries lead to several issues including self-discharge, corrosion reaction, and hydrogen evolution reaction (HER). In this paper, viscosity of electrolyte has been controlled to suppress the corrosion reaction, HER, and self-discharge behavior. Various viscosity average molecular weights of poly(acrylic acid) (PAA) are adopted to prepare the electrolyte. The evaporation of electrolytes is proportional to the increase in molecular weight. In addition, enhanced self-discharge behavior is obtained when the gelling agent with high molecular weight is used. In addition, the zinc-air cell assembled with lower viscosity average molecular weight of PAA (Mv ~ 450,000) delivers 510.85 mAh/g and 489.30 mAh/g of discharge capacity without storage and with 6 hr storage, respectively. Also, highest capacity retention (95.78 %) is obtained among studied materials.
인류의 에너지 수급은 항상 인간의 삶에 중요한 문제이며, 최근에는 전기 생산 및 공급 문제로 이어지고 있다. 이에 관련하여 본 연구에서는 에너지 저장장치의 일환으로 슈퍼커패시터 용도의 고체 전해질막을 제조하였다. 제조한 전해질막 은 poly(vinyl alcohol) (PVA) 주사슬에 poly(oxyethylene methacrylate) (POEM) 곁사슬을 그래프팅하여 사용하였으며, 그래프팅은 자유 라디칼 중합법을 통해 합성하였다. 본 연구에서 사용한 PVA-g-POEM 가지형 공중합체를 슈퍼커패시터 전해질에 적용한 사례는 처음이다. POEM 그래프팅을 통해 PVA가 고유하게 가지고 있던 구조가 변화하였으며, 이를 FT-IR을 통해 분석하였다. 또한, 합성한 공중합체를 이용한 슈퍼커패시터 성능은 cyclic voltammetry (CV), galvanostatic charge/discharge (GCD), ragone plot 등을 통해 분석하였다. 이를 통해 기존에 수계 전해질로 PVA 단일 고분자만 사용하던 분야에 그래프팅 방법이라는 새로운 접근법을 제시하였다.
본 연구는 1M Li2SO4 및 1M Na2SO4 수용액에서 CoSe 나노 입자의 전기 화학적 성능을 조사 하였다. CoSe 나노 입자의 전기 화학적 효율은 1M Na2SO4 전해질에서 더 높은 비정전 용량을 보여주는 결 과를 얻었고 이것은 주로 1M Na2SO4 용액의 벌크 전해질에서 수화 된 이온의 빠른 이동과 활물질에 의해 제공되는 낮은 전기 화학적 임피던스가 원인이라 사료된다. 또한, 순환 전압 전류법 안정성 실험에서 25 mV s-1의 스캔 속도로 1000 회 연속 순환 전압 전류 측정주기 후에도 각각 1M Na2SO4 및 1M Li2SO4에서 약 92 % 및 89 %의 특정 정전 용량의 유지를 보여주었다. 이 연구는 새로운 하이브리드 슈퍼 커패시터를 개발하기 위한 기초 데이터를 제공하며 비대칭 슈퍼 커패시터의 양극으로 사용될 수 있음을 시사한다.
본 연구에서는 녹말(starch)과 poly(acrylonitrile) (PAN)으로 이루어진 가지형 공중합체 기반의 슈퍼 캐퍼시터용 전해질막을 손쉽게 제조하는 방법을 제시하였다. 가지형 공중합체(starch-g-PAN)는 세륨 이온에 의해 개시된 자유 라디칼 중합을 통해 합성되었다. 실온에서 어떠한 유기용매 없이 Starch-g-PAN 고분자를 이온성 액체, 1-ethyl-3-methylimidazolium dicyanamide (EMIM DCA)에 용해하였으며 1시간 동안 100°C의 고온을 가해줌으로써 손쉽게 고분자 막을 만들었다. 제조된 막은 유연하여 플렉서블 고체 슈퍼 캐퍼시터의 전해질에 적용되었다. Starch-g-PAN 기반의 고분자 전해질막을 사용한 슈퍼 캐퍼시터는 0.5 A/g의 전류 밀도에서 약 21 F/g의 정전용량을 가졌으며 10,000 사이클 동안 86%의 유지율을 보이며 높은 주기 안정성을 보였다. 본 연구를 통해 starch-g-PAN 기반의 고분자 전해질막이 우수한 성능을 가진 플렉서블 고체 슈퍼 캐퍼시터에 응용될 수 있음을 확인하였다.
염료감응형 태양전지는 지속 가능한 에너지원으로서 많은 관심을 받고 있다. 염료감응형 태양전지의 효율과 장기 안정성은 전극 물질과 전해질에 의해 크게 영향을 받는데 본 총설에서는 전해질에 초점을 두어 서술하고자 한다. 고분자 전해질막은 염료감응형 태양전지에서 기존의 액체 전해질을 대체하기 위한 대안으로 제시되어 왔다. 기존의 액체 전해질은 높 은 효율을 나타낼 수 있지만 장기적인 안정성 문제와 누액 문제로 인해 고분자 전해질막에 관한 관심은 지속적으로 증가하고 있으며 매년 이와 관련된 논문들이 활발히 보고되고 있다. 본 총설은 염료감응형 태양전지를 위한 고분자 전해질막의 개념과 개발에 대한 간단한 설명을 다루고 있으며 고분자 매트릭스의 개질, 유-무기 가소제 및 이온성 액체와 같은 첨가제의 도입에 따른 염료감응형 태양전지의 효율과 전기화학적 특성에 대해서도 최근의 연구들이 정리되어 있다.
3-부티닐-p-톨루엔술포네이트를 이용한 2-에티닐피리딘의 무촉매중합을 통하여 이온성 전도성 고분자를 합성하였다. 합성 고분자의 분자구조는 IR, NMR, UV-visible 분광분석기로 확인하였다. 공액구조 주사슬 고분자의 특징적인 π → π* 전이에 기인하는 약하면서도 완만한 흡수 피크를 800 nm까지 보여 주었다. 합성한 고분자의 전기화학적 특성과 전기광학 특성을 측정하고 분석하였다. 이 고분자는 도핑과 탈도핑 사이에서 매우 안정한 비가역 전기화학적 거동을 보였다.
Supercapacitors are attracting much attention in sensor, military and space applications due to their excellent thermal stability and non-explosion. The ionic liquid is more thermally stable than other electrolytes and can be used as a high temperature electrolyte, but it is not easy to realize a high temperature energy device because the separator shrinks at high temperature. Here, we report a study on electrochemical supercapacitors using a composite electrolyte film that does not require a separator. The composite electrolyte is composed of thermoplastic polyurethane, ionic liquid and fumed silica nanoparticles, and it acts as a separator as well as an electrolyte. The silica nanoparticles at the optimum mass concentration of 4wt% increase the ionic conductivity of the composite electrolyte and shows a low interfacial resistance. The 5 wt% polyurethane in the composite electrolyte exhibits excellent electrochemical properties. At 175 ℃, the capacitance of the supercapacitor using our free standing composite electrolyte is 220 F/g, which is 25 times higher than that at room temperature. This study has many potential applications in the electrolyte of next generation energy storage devices.