검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 130

        43.
        2022.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The practice turn in the science education community emphasizes students’ engagement in the activities that scientists and engineers actually do when they see, explain, and critique a phenomenon, or solve a problem. This turn highlights the importance of science learning environments for students. Consequently, the purpose of this study was the examination of relevant literature with the aim of proposing theoretically and empirically derived teaching strategies for students’ productive disciplinary engagement (PDE) through model-based learning (MBL) in science classrooms. To this end, collected literature focusing on PDE and MBL was analyzed to better understand 1) how teachers can foster students' PDE in science classrooms, 2) how PDE can be connected to MBL, and 3) what supports are required for students’ PDE through MBL. As a result of our analysis, a close relationship between PDE and MBL was identified. Importantly, this research reveals the promise of MBL for supporting students’ PDE through the problematizing, authority, accountability, and resources. Further, our literature examination provided a better understanding of what supports are required for students’ engagement in PDE through MBL and why this matters in the context of the practice turn in science education.
        4,000원
        44.
        2022.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The prediction of algal bloom is an important field of study in algal bloom management, and chlorophyll-a concentration(Chl-a) is commonly used to represent the status of algal bloom. In, recent years advanced machine learning algorithms are increasingly used for the prediction of algal bloom. In this study, XGBoost(XGB), an ensemble machine learning algorithm, was used to develop a model to predict Chl-a in a reservoir. The daily observation of water quality data and climate data was used for the training and testing of the model. In the first step of the study, the input variables were clustered into two groups(low and high value groups) based on the observed value of water temperature(TEMP), total organic carbon concentration(TOC), total nitrogen concentration(TN) and total phosphorus concentration(TP). For each of the four water quality items, two XGB models were developed using only the data in each clustered group(Model 1). The results were compared to the prediction of an XGB model developed by using the entire data before clustering(Model 2). The model performance was evaluated using three indices including root mean squared error-observation standard deviation ratio(RSR). The model performance was improved using Model 1 for TEMP, TN, TP as the RSR of each model was 0.503, 0.477 and 0.493, respectively, while the RSR of Model 2 was 0.521. On the other hand, Model 2 shows better performance than Model 1 for TOC, where the RSR was 0.532. Explainable artificial intelligence(XAI) is an ongoing field of research in machine learning study. Shapley value analysis, a novel XAI algorithm, was also used for the quantitative interpretation of the XGB model performance developed in this study.
        4,000원
        45.
        2022.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        일반적으로 콘크리트는 골재, 모래, 시멘트, 담수, 혼합재 등 다양한 재료로 구성되어있으며 재령에 따라서 강도가 증 가한다. 콘크리트에 필요한 각 재료의 비율은 혼합 설계를 통해 결정되지만, 콘크리트의 강도는 실험적으로 측정되기 전까지는 알 수 없다. 이러한 한계를 극복하기 위해 실험을 통해 얻은 데이터를 이용하여 콘크리트의 압축 강도를 예측하기 위해 통계수 학과 기계학습 알고리즘을 이용한 많은 연구가 시도되었다. 이전의 연구는 콘크리트 압축 강도 예측에 신경망 기법이 가장 적 합하다고 제안하였다. 그러나 신경망 기법은 다른 기계학습과 비교하여 모델 학습에 계산 비용이 많이 들어 실제로 적용하기 어려운 문제점이 있다. 최근 몇 년 동안 다양한 회귀 분석 모델이 개발되었으므로 본 연구에서는 신경망 대신 최신 회귀 분석 모델을 이용하여 콘크리트 강도 예측모델을 제시하였다. 이를 위해 최근 개발된 회귀 분석 모델에 대한 교차검증을 시행하여 최적의 모델을 선정하였다. 그리드 검색을 통하여 선정된 각 모델의 하이퍼 파라미터를 최적화하고, 국내외 데이터를 활용하여 기계학습 모델을 훈련하고 검증하였다. 이들 중 CatBoost, LGBMR, RFR, XGBoost 회귀모델이 높은 성능을 보여주었다. 특히 그 중에서 XGBoost 회귀 분석 모델이 가장 작은 오차와 높은 정확도를 보여주었다. 이들 중 오류가 가장 큰 LGBMR 모델도 이전 연구에서 제안된 신경망 및 앙상블 모델보다 성능이 우수하였다. 현장 레미콘 콘크리트에 대한 압축 강도 예측을 시행하여 학 습된 모델의 현장 적용 가능성을 확인하였다.
        4,300원
        46.
        2022.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Flipped learning research has been applied in various educational fields since 2015 and the educational effects have been discussed in previous literature. In the beauty field, flipped learning research is insufficient; in particular, it is difficult to find research on flipped learning specifically concerning nail beauty education. The purpose of this study is to develop a model for applying flipped learning to nail beauty education which should involve practical training based on theory. Such an approach is considered effective. Data were collected and analyzed focusing on previous studies with flipped learning applied as a research method. The subject of the research is “Nail Color Design 1”, a common nail major elective subject at J college. The “Nail Color Design 1” course is a practice-oriented course in the form of theory and practical classes. Consequently, the flipped learning education model for nail beauty was designed by reflecting learners’ needs through the ADDIE instructional design model. It was applied based on the education structure of the Pre-class, In-class, and Post-class of the PARTNER instructional learning model. This study deviates from the traditional practical education model, and has educational significance as a practical model in which flipped learning is applied to nail beauty subjects and self-reflection is derived through project practice.
        4,200원
        47.
        2022.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구는 데이터를 기반으로 한 인공지능 기계학습 기법을 활용하여 온실 내부온도 예측 시뮬레이션 모델을 개발을 수행 하였다. 온실 시스템의 내부온도 예측을 위해서 다양한 방법 이 연구됐지만, 가외 변인으로 인하여 기존 시뮬레이션 분석 방법은 낮은 정밀도의 문제점을 지니고 있다. 이러한 한계점 을 극복하기 위하여 최근 개발되고 있는 데이터 기반의 기계 학습을 활용하여 온실 내부온도 예측 모델 개발을 수행하였 다. 기계학습모델은 데이터 수집, 특성 분석, 학습을 통하여 개 발되며 매개변수와 학습방법에 따라 모델의 정확도가 크게 변 화된다. 따라서 데이터 특성에 따른 최적의 모델 도출방법이 필요하다. 모델 개발 결과 숨은층 증가에 따라 모델 정확도가 상승하였으며 최종적으로 GRU 알고리즘과 숨은층 6에서 r2 0.9848과 RMSE 0.5857℃로 최적 모델이 도출되었다. 본 연 구를 통하여 온실 외부 데이터를 활용하여 온실 내부온도 예 측 모델 개발이 가능함을 검증하였으며, 추후 다양한 온실데이 터에 적용 및 비교분석이 수행되어야 한다. 이후 한 단계 더 나아 가 기계학습모델 예측(predicted) 결과를 예보(forecasting)단 계로 개선하기 위해서 데이터 시간 길이(sequence length)에 따른 특성 분석 및 계절별 기후변화와 작물에 따른 사례별로 개발 모델을 관리하는 등의 다양한 추가 연구가 수행되어야 한다.
        4,200원
        50.
        2022.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : In this study, model-agnostic methods are applied for interpreting machine learning models, such as the feature global effect, the importance of a feature, the joint effects of features, and explaining individual predictions. METHODS : Model-agnostic global interpretation techniques, such as partial dependence plot (PDP), accumulated local effect (ALE), feature interaction (H-statistics), and permutation feature importance, were applied to describe the average behavior of a machine learning model. Moreover, local model-agnostic interpretation methods, individual conditional expectation curves (ICE), local surrogate models (LIME), and Shapley values were used to explain individual predictions. RESULTS : As global interpretations, PDP and ALE-Plot demonstrated the relationship between a feature and the prediction of a machine learning model, where the feature interaction estimated whether one feature depended on the other feature, and the permutation feature importance measured the importance of a feature. For local interpretations, ICE exhibited how changing a feature changes the interested instance’s prediction, LIME explained the relationship between a feature and the instance’s prediction by replacing the machine model with a locally interpretable model, and Shapley values presented how to fairly contribute to the instance’s prediction among the features. CONCLUSIONS : Model-agnostic methods contribute to understanding the general relationship between features and a prediction or debut a model from the global and/or local perspective, securing the reliability of the learning model.
        4,500원
        51.
        2022.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구에서는 진해만의 DO 농도 재현을 목표로 LSTM 모형의 최적 매개변수 조건과 예측변수를 선별하기 위한 Case study를 진행하였다. 모형 매개변수 Case study 결과, 가장 적은 Hidden node와 Epoch인 Hidden node=10, Epoch=100에서 가장 낮은 정확도를 보였다. 이는 모형이 과소적합(Underfitting) 상태인 것으로 판단된다. Hidden node=80, Epoch=1200에서 R2 값은 0.99로 가장 높은 정확도를 보였다. 예 측변수 Case study 결과, 1개의 환경변수만을 예측변수로 사용한 Step 1에서 수온을 예측변수로 했을 때 저층 DO 농도 재현의 R2 값은 0.81 로 가장 높은 정확도를 보였다. 이후 2개의 환경변수를 사용한 Step 2에서는 수온과 SiO2를 예측변수로 했을 때 R2 값은 0.92로 수온만 사 용했을 때보다 정확도가 급격히 증가하였다. 이는 저층 DO 농도와 SiO2 농도간의 높은 상관성(=0.70)에 기인한 것으로 판단된다. 상기 결과로부터 진해만의 DO 농도 재현에 적합한 LSTM 모형의 매개변수와 예측변수를 찾을 수 있었다.
        4,000원
        52.
        2021.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Algal bloom is an ongoing issue in the management of freshwater systems for drinking water supply, and the chlorophyll-a concentration is commonly used to represent the status of algal bloom. Thus, the prediction of chlorophyll-a concentration is essential for the proper management of water quality. However, the chlorophyll-a concentration is affected by various water quality and environmental factors, so the prediction of its concentration is not an easy task. In recent years, many advanced machine learning algorithms have increasingly been used for the development of surrogate models to prediction the chlorophyll-a concentration in freshwater systems such as rivers or reservoirs. This study used a light gradient boosting machine(LightGBM), a gradient boosting decision tree algorithm, to develop an ensemble machine learning model to predict chlorophyll-a concentration. The field water quality data observed at Daecheong Lake, obtained from the real-time water information system in Korea, were used for the development of the model. The data include temperature, pH, electric conductivity, dissolved oxygen, total organic carbon, total nitrogen, total phosphorus, and chlorophyll-a. First, a LightGBM model was developed to predict the chlorophyll-a concentration by using the other seven items as independent input variables. Second, the time-lagged values of all the input variables were added as input variables to understand the effect of time lag of input variables on model performance. The time lag (i) ranges from 1 to 50 days. The model performance was evaluated using three indices, root mean squared error-observation standard deviation ration (RSR), Nash-Sutcliffe coefficient of efficiency (NSE) and mean absolute error (MAE). The model showed the best performance by adding a dataset with a one-day time lag (i=1) where RSR, NSE, and MAE were 0.359, 0.871 and 1.510, respectively. The improvement of model performance was observed when a dataset with a time lag up of about 15 days (i=15) was added.
        4,000원
        53.
        2021.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구는 기계학습을 통한 수량예측모델을 이용하여 이상기상에 따른 WCM의 DMY 피해량을 산출하기 위한 목적으로 수행하였다. 수량예측모델은 WCM 데이터 및 기상 데이터를 수집 후 가공하여 8가지 기계학습을 통해 제작하였으며 실험지역은 경기도로 선정하였다. 수량예측모델은 기계학습 기법 중 정확성이 가장 높은 DeepCrossing (R2=0.5442, RMSE=0.1769) 기법을 통해 제작하였다. 피해량은 정상기상 및 이상기상의 DMY 예측값 간 차이로 산출하였다. 정상기상에서 WCM의 DMY 예측값은 지역에 따라 차이가 있으나 15,003~17,517 kg/ha 범위로 나타났다. 이상기온, 이상강수량 및 이상풍속에서 WCM의 DMY 예측 값은 지역 및 각 이상기상 수준에 따라 차이가 있었으며 각각 14,947~17,571 kg/ha, 14,986~17,525 kg/ha 및 14,920~17,557 kg/ha 범위로 나타났다. 이상기온, 이상강수량 및 이상풍속에서 WCM의 피해량은 각각 –68~89 kg/ha, -17~17 kg/ha 및 – 112~121 kg/ha 범위로 피해로 판단할 수 없는 수준이었다. WCM의 정확한 피해량을 산출하기 위해서는 수량예측모델에 이용하는 이상기상 데이터 수의 증가가 필요하다.
        4,000원
        57.
        2021.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        해운 시황을 예측하는 것은 중요한 문제이다. 투자 방식의 결정, 선대 편성 방법, 운임 등을 결정하기 위한 판단 근거가 되며 이는 기업의 이익과 생존에 큰 영향을 미치기 때문이다. 이를 위해 본 연구에서는 기계학습 모델인 장단기 메모리 및 간소화된 장단기 메모리 구조의 Gated Recurrent Units를 활용하여 컨테이너선의 해상운임 예측 모델을 제안한다. 운임 예측 대상은 중국 컨테이너 운임지수 (CCFI)이며, 2003년 3월부터 2020년 5월까지의 CCFI 데이터를 학습에 사용하였다. 각 모델에 따라 2020년 6월 이후의 CCFI를 예측한 후 실 제 CCFI와 비교, 분석하였다. 실험 모델은 하이퍼 파라메터의 설정에 따라 총 6개의 모델을 설계하였다. 또한 전통적인 분석 방법과의 성 능을 비교하기 위해 ARIMA 모델도 실험에 추가하였다. 최적 모델은 두 가지 방법에 따라 선정하였다. 첫 번째 방법으로 각 모델을 10회 반복 실험하여 얻은 RMSE의 평균값이 가장 작은 모델을 선정하는 것이다. 두 번째 방법으로는 모든 실험에서 가장 낮은 RMSE를 기록한 모델을 선정하는 것이다. 실험 결과 전통적 시계열 예측모델인 ARIMA 모델과 비교하여 딥러닝 모델의 정확도를 입증하였으며, 정확한 예측모델을 통해 운임 변동의 위험관리 능력을 제고시키는데 기여했다. 반면 코로나19와 같은 외부 효과에 따른 운임의 급격한 변화상황이 발생한 경우, 예측모델의 정확도가 감소하는 한계점을 나타냈다. 제안된 모델 중 GRU1 모델이 두 가지 평가 방법 모두에서 가장 낮은 RMSE(69.55, 49.35)를 기록하며 최적 모델로 선정되었다.
        4,000원
        59.
        2020.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Deep learning models, which imitate the function of human brain, have drawn attention from many engineering fields (mechanical, agricultural, and computer engineering etc). The major advantages of deep learning in engineering fields can be summarized by objects detection, classification, and time-series prediction. As well, it has been applied into environmental science and engineering fields. Here, we compiled our previous attempts to apply deep learning models in water-environment field and presented the future opportunities.
        4,500원
        60.
        2020.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        목적 : 인공지능의 기계학습 또는 심층학습을 이용한 연구가 다양한 분야에서 시도되고 있다. 본 연구는 공공 시력데이터를 자동화 수집하고, 수집한 데이터를 기계학습에 적용 및 예측하였다. 다양한 학습모델간 성능을 비교 함으로써, 시과학분야에서 적용 가능한 기계학습 최적화모델을 제시함에 있다. 방법 : 국민건강보험(NHISS) 및 통계포털(KOSIS)에 발표된 국민 시력분포 현황관련 자료를 특정 색인을 포함하 는 자료검색기법인 크롤링(crawling)을 사용하여 검색 및 수집을 자동화하였다. 2011년부터 2018년까지 보고된 모든 자료를 수집하였으며, 데이터 학습을 위해 Linear Regression, LASSO, Ridge, Elastic Net, Huber Regression, LASSO/LARS, Passive Aggressive Regressor 그리고 Pansacregressor 총 8개 모델을 사용하여 각각 데이터 학습 하였다. 결과 : 수집한 데이터를 기반으로 기계학습 모델을 통해 2018년을 예측하였다. 각 모델간 2018년도 실제-예측데 이터 차이를 MAE(Mean Absolute Error)와 RMSE(Root Mean Square Error) 점수로 각각 나타냈다. 학습모델 별 차이 중 MAE 평가결과 모델간 우/좌 Linear Regression(0.22/0.22), LASSO(0.83/0.81), RIDGE(0.31/0.31), Elastic Net(0.86/0.84), Huber Regression(0.14/0.07), LASSO/LARS(0.15/0.14), Passive Aggressive Regressor (0.29/0.18) 그리고 RANSA Regressor(0.22/0.22)를 보였다. RMSE에서 Linear Regression(0.40/0.40), LASSO (1.08/1.06), Ridge(0.54/0.54), Elastic Net(1.19/1.17), Huber Regression(0.20/0.20), LASSO/LARS(0.24/0.23), Passive Aggressive Regressor(0.21/0.58) 그리고 RANSA Regressor(0.40/0.40) 각각 나타냈다. 결론 : 본 연구는 자동화 자료검색 및 수집을 위한 크롤링 기법을 이용하여 데이터를 수집하였다. 이를 기반으 로 고전 선형모델을 기계학습에 적용할 수 있도록 하고, 데이터 학습을 위한 8개 학습모델들 간 성능을 비교하였다.
        4,000원
        1 2 3 4 5