검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 82

        42.
        2004.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Aluminum based metal matrix composite reinforced with SiC particles was fabricated by the powder-in sheath rolling method. A stainless steel tube with outer diameter of 12 mm and wall thickness of 1mm was used as a sheath. Mixture of aluminum powder and SiC particles of which volume content was varied from 5 to 20vol.% was filled in the tube by tap filling and then rolled to 75% reduction at ambient temperature. The rolled specimen was sintered at 56 for 0.5hr. The tensile strength of the (SiC)/Al composite increased with the volume content of SiC particles, and at 20vol.% it reached a maximum of 100㎫ which is 1.6 times higher than unreinforced material. The elongation decreased with the volume content of O particles. The mechanical properties of the (SiC)/Al composite fabricated by the powder-in sheath rolling is compared with that of (AlO)/Al composite by the same process.ess.
        4,000원
        43.
        2003.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Asbestos is being replaced throughout the world among friction materials because of its carcinogenic nature. This has raised an important issue of heat dissipation in the non-asbestos brake pad materials being developed for automobiles etc. It has been found that two of the components i.e. carbon fibres as reinforcement and graphite powder as friction modifier, in the brake pad material, can playa vital role in this direction. The study reports the influence of these modifications on the thermal properties like coefficient of thermal expansion (CTE) and thermal conductivity along with the mechanical properties of nonasbestos brake pad composite samples developed in the laboratory.
        3,000원
        44.
        2003.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The composites fabricated by powder in sheath rolling method were cold-rolled by 50% reduction and annealed for 1.8 ks at various temperatures ranging from 200 to 50, for improvement of the mechanical properties. The mechanical properties and texture of the composites after rolling and annealing were investigated. The tensile strength of the composites increased significantly due to work hardening after cold rolling, however it decreased due to restoration after annealing. The strength of the composites was improved by thermo mechanical treatment. On the other hand, the texture evolution with annealing temperatures wa,i different between the unreinforced material and the composites. The unreinforced material showed a deformation (rolling) texture of which main component is {112}<111> at annealing temperatures up to 30. However, the composites have already exhibited a recrystallization texture of which main component is {001}<100> after annealing at 20. This proves that the critical temperature for recrystailization is lower in the composites than in the unreinforced ones.
        4,000원
        45.
        2003.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In the present study, the focus is on the synthesis of titanium carbide/cobalt composite powder by the spray thermal conversion process using metallic salt solution as the raw materials. Two types of oxide powders of Ti-Co-O system were prepared by the spray drying of two types of metallic salt solutions : titanium chloride-cobalt nitrate and powder-cobalt nitrate solutions. These oxide powders were mixed with carbon black, and then these mixtures were carbothermal reduced under a flowing argon atmosphere. The changes in the phase structure and thermal gravity of the mixtures during carbothermal reduction were analysed using XRD and TG-DTA. In the case of using the titanium chloride-cobalt nitrate solution, it could not be obtained TiC/Co composite powder due to contamination of the impurities during the spray drying of the solution. However, in tile case of using the powder-cobalt nitrate scullion, TiC-15 wt. %Co composite powder could be synthesized by the spray thermal conversion process. The synthesized TiC-15 wt. %Co composite powder at 120 for 2 hours has average particle size of 150 nm.
        4,000원
        53.
        2003.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The powder-in sheath rolling was applied to the fabrication of composite. A stainless steel tube with outer diameter of 12 mm and wall thickness of 1 mm was used as a sheath. Mixture of aluminum powder and particles of which volume content was varied from 5 to 20 vol.% was filled in the tube by tap filling and then rolled to 75% reduction at ambient temperature. The re]]ed specimen was sintered at 56 for 0.5 hr. The composite fabricated by the sheath rolling and subsequent sintering showed the relative density higher than 0.96. The tensile strength of the composite increased with the volume content of particles, and it reached a maximum of 90 MPa which is 1.5 times higher than unreinforced material. The elongation decreased with the volume content of particles. It is concluded that the powder-in sheath rolling is an effective method for fabrication of composite.
        4,000원
        1 2 3 4 5