검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 206

        43.
        2022.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The poor durability issue of polymer electrolyte membrane fuel cells is a major concern in terms of their commercialization. To understand the degradation mechanism of the catalysts, an accelerated durability test (ADT) was conducted according to the protocol established by internationally accredited organizations. However, reversible and irreversible factors contributing to the loss of activity have not yet been practically segregated because of the limitations of a batch-type three-electrode system, leading to the misunderstanding of the deactivation mechanism. In this study, we investigated the effect of a fresh electrolyte on the ADT and recovery process. When the fresh electrolyte was used at every range of the cycle, the chances of incorrect detection of dissolved CO and Pt ions in the electrolyte were very low. When the same electrolyte was used throughout the test, the accumulated Pt ions were deposited on the surface of the Pt nanoparticles or carbon support, affording an increased electrochemical surface area (ECSA) of Pt. Therefore, we believe that periodic replacement by a fresh electrolyte or a continuous-flow electrolyte is essential for the precise determination of the structural and electrochemical changes in Pt/C catalysts.
        4,000원
        44.
        2022.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this work, the sulfonic acid group was introduced into the resorcinol–formaldehyde (RF) microspheres by the addition of p-phenolsulfonic acid during the polycondensation process of RF. The hydrophilicity of the sulfonated RF allowed KOH to infiltrate inside the microspheres, which enhanced the formation of mesopores in the carbon microspheres during the activation process by KOH. SEM and TEM observations and N2 adsorption measurements verified the formation of abundant mesopores in the porous carbon microspheres. The BET surface area of these mesoporous carbons exceeded 2000 m2/ g. In 17 m NaClO4 “water-in-salt” (WIS) electrolyte-based supercapacitor, the synthesized mesoporous carbon exhibited high specific capacitance of 170 F/g at current density of 0.5 A/g, comparable to those in regular KOH electrolyte. When graphite was used as current collectors, the symmetric cell could operate at 2.5 V, and the mesoporous carbon exhibited an energy density of 43 Wh/kg at power density of 0.25 kW/kg, and 25 Wh/kg at power density of 6.25 kW/kg, respectively, which were superior to those using Pt or stainless steel as current collectors. The mesoporous carbon/graphite was an excellent electrode in new-generation “WIS” electrolyte-based high-voltage supercapacitor due to their high energy and power density.
        4,000원
        45.
        2022.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        높은 안전성과 견고한 기계적 특성을 가진 고체상 슈퍼커패시터는 차세대 에너지 저장 장치로서 세계적 관심을 끌고 있다. 슈퍼커패시터의 전극으로서 경제적인 탄소 기반 전극이 많이 사용되는데 수계 전해질을 도입하는 경우 소수성 표 면을 가진 탄소 기반 전극과의 계면 상호성이 좋지 않아 저항이 증가한다. 이와 관련하여 본 연구에서는 전극 표면에 산소 플라즈마 처리를 하여 친수화된 전극과 수계 전해질 사이의 향상된 계면 성질을 기반으로 더 높은 전기화학적 성능을 얻는 방법을 제시한다. 풍부해진 산소 작용기들로 인한 표면 친수화 효과는 접촉각 측정을 통해 확인하였으며, 전력과 지속시간을 조절함으로써 친수화 정도를 손쉽게 조절할 수 있음을 확인하였다. 수계 전해질로 PVA/H3PO4 고체상 고분자 전해질막을 사 용하였으며 프레싱하여 전극에 도입하였다. 15 W의 낮은 전력으로 5초간 산소 플라즈마 처리를 시행하는 것이 최적 조건이 었으며 슈퍼커패시터의 에너지 밀도가 약 8% 증가하였다.
        4,000원
        46.
        2021.11 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        As the size of market for electric vehicles and energy storage systems grows, the demand for lithium-ion batteries (LIBs) is increasing. Currently, commercial LIBs are fabricated with liquid electrolytes, which have some safety issues such as low chemical stability, which can cause ignition of fire. As a substitute for liquid electrolytes, solid electrolytes are now being extensively studied. However, solid electrolytes have disadvantages of low ionic conductivity and high resistance at interface between electrode and electrolyte. In this study, Li7La3Zr2O12 (LLZO), one of the best ion conducting materials among oxide based solid electrolytes, is fabricated through RF-sputtering and various electrochemical properties are analyzed. Moreover, the electrochemical properties of LLZO are found to significantly improve with co-sputtered Li2O. An all-solid thin film battery is fabricated by introducing a thin film solid electrolyte and an Li4Ti5O12 (LTO) cathode; resulting electrochemical properties are also analyzed. The LLZO/Li2O (60W) sample shows a very good performance in ionic conductivity of 7.3  108 S/cm, with improvement in c-rate and stable cycle performance.
        4,000원
        51.
        2021.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        유연한 전기변색 소자(electrochromic device, ECD)는 스마트 윈도우 등 다양한 분야에서 응용이 기대되는 유망한 기술이다. 고분자 전해질은 유연한 ECD의 탈-변색 성능 및 물리적 안정성을 결정하는 중요한 구성요소이다. 본 연구에서는 효과적인 유연한 ECD 제조 및 내구성 향상을 위해 치수안정성이 우수한 세공충진 고분자 전해질 멤브레인(PFPEM)을 개발 하였다. 저렴하며 물리적 및 화학적 안정성이 우수한 폴리에틸렌 재질의 다공성 지지체의 세공에 접착력이 우수한 polyvinyl acetate와 이온전도도를 향상시킬 수 있는 polyethylene glycol을 사용하여 제조한 고분자 전해질을 충진하였다. 제조된 PFPEM의 최적 리튬 염(LiTFSI) 함량은 약 27 wt%에서 결정되었으며 우수한 치수안정성와 접착 강도 그리고 종래의 고분자 전해질에 근접하는 이온전도 특성을 가지고 있음을 확인하였다. 다공성 지지체의 사용으로 가시광 투과율이 저하되었으나 변색 상태에서는 오히려 장점으로 작용할 것으로 전망되었다.
        4,000원
        52.
        2021.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Abstract In this study, we investigated that the activated carbon (AC)-based supercapacitor and introduced SIFSIX-3-Ni as a porous conducting additive to increase its electrochemical performances of AC/SIFSIX-3-Ni composite-based supercapacitor. The AC/SIFSIX-3-Ni composites are coated onto the aluminum substrate using the doctor blade method and conducted an ion-gel electrolyte to produce a symmetrical supercapacitor. The electrochemical properties of the AC/SIFSIX-3-Ni composite-based supercapacitor are evaluated through cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and galvanostatic charge/discharge tests (GCD). The AC/SIFSIX-3-Ni composite-based supercapacitor showed reasonable capacitive behavior in various electrochemical measurements, including CV, EIS, and GCD. The highest specific capacitance of the AC/SIFSIX-3-Ni composite-based supercapacitor was 129 F g−1 at 20 mV s−1.
        4,000원
        53.
        2021.05 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Owing to its low cost, easy fabrication process, and good ionic properties, aqueous supercapacitors are under strong consideration as next-generation energy storage devices. However, the limitation of the current collector is its poor electrochemical stability, leading to low energy storage performance. Therefore, a reasonable design of the current collector and the acidic electrolyte is a necessary, as well as interfacial engineering to enhance the electrochemical performance. In the present study, graphite foil, with excellent electrochemical stability and good electrical properties, is suggested as a current collector of aqueous supercapacitors. This strategy results in excellent electrochemical performance, including a high specific capacitance of 215 F g−1 at a current density of 0.1 A g−1, a superior high-rate performance (104 F g−1 at a current density of 20.0 A g−1), and a remarkable cycling stability of 98 % at a current density of 10.0 A g−1 after 9,000 cycles. The superior energy storage performance is mainly ascribed to the improved ionic diffusion ability during cycling.
        4,000원
        55.
        2021.04 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Electronic textiles promise to provide an intelligent platform to enlarge the scope of wearable electronic applications. Therefore, the combination of flexible energy storage devies into wearable systems is a key for operating these electronic textiles during bending, knotting, and rolling. Nonetheless, the application of fibrous supercapacitors consisting of a gel-electrolyte and carbon fiber electrode is still obstructed by low capacitance, low rate-performance, and poor cycling stability owing to the inefficient interface between the gel-electrolyte and electrode. Here, a fibrous supercapacitor is obtained using an optimized gelelectrolyte that improves the ionic diffusion capability. The optimized fibrous supercapacitor shows a superior electrochemical performance, including high specific capacitance of 41 mF cm−2 at current density of 2.0 μA cm−2, high-rate performance with 17 mF cm−2 at a current density of 15.0 μA cm−2, and outstanding cycling stability (88% after 3,000 cycles at a current density of 200.0 μA cm−2). The excellent energy storage performance is mainly attributed to the optimzied interface between the gelelectrolyte and electrode material, leading to an improved ionic diffusion capability.
        4,000원
        1 2 3 4 5