검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 1,608

        41.
        2023.05 구독 인증기관·개인회원 무료
        Zinc injection into the coolant system of nuclear power plants is an effective method for reducing corrosion and improving performance. The effectiveness of this method is influenced by various factors such as zinc concentration and injection rate. This paper provides an overview of the factors affecting the effectiveness of zinc injection in nuclear power plants, with a focus on zinc concentration and injection rate, and discusses various research results on the effects of these factors on corrosion reduction and coolant system performance. Zinc concentration is an important factor affecting the effectiveness of zinc injection. The research results show that gradual increases in zinc concentration are more effective for coolant system stability. However, the concentration should not exceed the recommended levels as high zinc concentrations can have negative effects on the system. Injection rate is also an important factor affecting the effectiveness of this method. The research results show that gradual increases in injection rate are more effective for coolant system stability. However, excessive injection rates can have negative effects on the system such as overload of the zinc injection facility and chemical shocks within the coolant system, and therefore, should be optimized. In conclusion, zinc concentration and injection rate are important factors affecting the effectiveness of zinc injection in nuclear power plants. The optimal concentration and injection rate should be determined based on specific reactor conditions and system requirements, and efforts should be made to maximize corrosion reduction and performance improvement.
        42.
        2023.05 구독 인증기관·개인회원 무료
        The 2007 Recommendation of the International Commission on Radiological Protection recommended the application of dose constraints to optimize radiation protection to resolve the inequity of exposure among radiation workers. The average annual occupational doses in Korean nuclear power plants (NPPs) are 0.3-0.8 mSv. These doses are much lower than the annual effective dose limit of 50 mSv for radiation workers stipulated by the Nuclear Safety Act. In addition, most NPP workers received less than 0.1 mSv per year. These doses are lower than the average annual occupational doses of 0.3- 0.8 mSv. Korean regulatory body conducted the study to legislate the dose constraints in the Korean regulatory system and determine dose constraints (draft) for radiation workers. The legislation of dose constraints would not greatly affect the radiation protection programs in Korean NPPs because most workers received very low doses. However, some workers received relatively higher doses than others. This study analyzed the occupational exposure conditions, such as exposure type and situation, in Korean NPPs. This study investigated the internal and external radiation doses and the radiation doses depending on the NPP operating conditions, including normal operation, planned maintenance, and intermediate maintenance, for the last ten years (2012-2021). As a result, most NPP workers received external exposure rather than internal exposure. Furthermore, most radiation exposures occurred during the planned maintenance period. The results of this study can be used for optimizing occupational doses in Korean NPPs.
        43.
        2023.05 구독 인증기관·개인회원 무료
        In this research, the dose rate was measured using a backpack-type scan survey device at 4 sites in sites around Nuclear Power Plants (Kori, Wolsong, Hanbit, Hanul), and the radioactivity ratio for each nuclide was evaluated using an high-purity germanium (HPGe) detector. Kori, Wolsong and Hanul power plants were measured within 2 km of the power plant, and Hanbit power plants were measured about 6.7 km from the power plant. As a result of measuring the dose rate with a backpacktype scan survey device, the average dose rate was the lowest in the measurement site 1 at 0.090 μSv/h, and the highest in the measurement site 4 at 0.145 μSv/h. All measurement points showed the domestic environmental dose rate level. The data obtained by the scan survey was visualized using the classed post and gridding functions of the surfer program. As a result of measurement with the HPGe detector, 137Cs was not detected, and only natural nuclides were detected. Among the detected natural nuclides, the radioactivity ratio was the highest for 40K with an average of 94.56%, and the lowest for 214Pb with an average of 0.26%. The results of this research can be used as basic data for radiation environment surveys around nuclear power plants. Further studies are needed to evaluate the radiation impacts by region and environment through periodic measurements.
        44.
        2023.05 구독 인증기관·개인회원 무료
        One aspect of securing safety from the operation of Nuclear Power Plants (NPPs) is to evaluate the impact on residents at the facility’s exclusive area boundary to confirm that the radiological risk is below the allowable level. Normally, the risks from gaseous and liquid effluents are evaluated during the operation of facilities. Meanwhile, in order to be approved for the decommissioning plan, the environmental risks caused by activities during dismantling is also evaluated. Therefore, this study aims to investigate the exposure pathways considered in evaluating the risks to nearby residents from the operation and decommissioning of nuclear facilities and to examine the differences. The emission rate by radionuclide is calculated by evaluating the amount of leak from nuclear fuel during the operation of the facility through design data of the NPP. Each of the liquid and gaseous effluents is calculated, and the exposure dose received by nearby residents is calculated by considering the exposure pathways with these emission rates. In order to initiate the decommissioning of nuclear facilities, approval of the Final Decommissioning Plan (FDP) must be obtained. The FDP chapter shall describe the results of the environmental impact assessment of the decommissioning. It will not differ significantly in the exposure pathways during operation. However, the decommissioning of nuclear facilities is ultimately to remove Systems, Structures, and Components (SSCs) and to remove the regulation of the Nuclear Safety Act by ensuring that sites and remaining buildings meet the criteria for the license termination. In terms of release and reuse of nuclear facilities, the exposure dose to be considered in evaluating the dose can be considered for two main types: the site and the remaining building. The factors affecting the exposure pathways considered in assessing the environmental impacts considered in the operation and decommissioning of nuclear facilities are due to gaseous and liquid effluents. However, the difference should reflect the impact of NPP operations and decommissioning activities when evaluating the amount of radionuclides released by these effluents. Decommissioning should consider the impact after decommissioning, which is the effect of the receptor by radionuclides remaining on the site and in the remaining buildings. At this time, the effects of the source from the soil and the source from the surface of the building should be considered for the external and internal exposure pathways.
        45.
        2023.05 구독 인증기관·개인회원 무료
        The decommissioning of the Nuclear Power Plant (NPP) is a long-term project of more than 15 years and will be carried out as a project, which will require project management skills accordingly. The risk of decommissioning project is a combination of many factors such as the decommissioning plan, the matters licensed by the regulatory agency, the design and implementation of dismantling, the dismantling plan and organization, and stakeholders. There will be some difficulties in risk management because key assumptions about many factors and the contents of major risks should be well considered. Risk management typically performs a series of processes ranging from identification and analysis to evaluation. In order to analyze and evaluate risks here, identification of potential risks is the first step, and in order to reasonably select potential risks, various factors mentioned should be considered. Therefore, the purpose of this study is to identify possible risks that should be considered for the decommissioning project in various aspects. The risk of the decommissioning project can be defined using the hazard keyword, and the risk family presented in the IAEA safety series can also be referred. It would be better to approach the radiological or non-radiological risks that may occur in the dismantling work with the hazard keyword, and if the characteristics of the decommissioning project are reflected, it would be a good idea to approach it on a risk family basis. There are 10 top risks in the risk family, 25 risks at the level 2 and 61 risks at the level 3 are presented. It may be complex to consider these hazards and risks recommended as risk families at the same time, so using the results of safety evaluation as input data for risk identification can be a reasonable approach. Therefore, this study intended to derive the possible risks of the decommissioning project based on the risk family structure. At this point, the reflection of the safety assessment results was intended to be materialized by considering the hazards checklist. As a result, this study defined and example of 38 possible risks for the decommissioning project, considering the 10 top risk family and lower level risk categories. This result is not finalized, and it will be necessary to further strengthened through expert workshops or HAZOP in the future.
        46.
        2023.05 구독 인증기관·개인회원 무료
        As a result of various generation, transmutation, and decay schemes, a wide variety of radionuclides exist in the reactor prior to accident occurrence. Considering all of the radionuclides as the accident source term in an offsite consequence analysis will inevitably take up excessive computer resources and time. Calculation time can be reduced with minimal impact on the accuracy of the results by considering only the nuclides that have a significant effect on the calculation among the potential radioactive sources that may be released into the environment. In earlier studies related to offsite consequence analysis, it is shown that the principal criteria for the radionuclide screening applied are as follows; radionuclide inventory in the reactor, radioactive half-life, radionuclide release fraction to the environment, relative dose contribution of nuclides within a specific group, and radiobiological importance. As a result, it is confirmed that 54, 60, and 69 nuclides are applied to the risk assessment performed in WASH-1400, NUREG-1150, and SOARCA (State-of-the-Art Reactor Consequence Analyses) project in the United States, respectively. In addition, in this study, the technical consultations with domestic and foreign experts were carried out to confirm details on criteria and process for screening out radionuclides in offsite consequence analysis. In this paper, based on the literature survey and technical consulting, we derived the screening process of selecting a list of radionuclides to be considered in the offsite consequence analysis. The first step is to eliminate radionuclides with little core inventory (less than specific threshold) or very short half-lives. However, important decay products of radionuclides that have short half-lives should not be excluded by this process. The next step is to further eliminate radionuclides by considering contribution to offsite impact, which is defined as a product of radioactivity released to the environment (i.e. ‘inventory in the reactor’ times ‘release fraction to offsite’) and comprehensive dose (or risk) coefficient taking into account all exposure pathways to be included. The final step is to delete isotopes that contribute less than certain threshold to any important dose metric through additional computer runs for each important source term. Even though it is presumed that this process is applicable to existing light water reactors and the set of accidents that would be considered in PSA, some of the assumptions or specific recommendations may need to be reconsidered for other reactor types or set of accident categories.
        47.
        2023.05 구독 인증기관·개인회원 무료
        To evaluate the characteristics of radioactive waste from permanently shut down nuclear power plants for decommissioning, there is a method of directly analyzing samples and, on the other hand, a computerized evaluation method based on operation history. Even if the radioactivity of the structures or radioactive wastes in the nuclear power plant is analyzed by the computerized evaluation method, a method of directly analyzing the sample must be accompanied in order to more accurately know the characteristics of the nuclear power plant’s radioactive waste material. In order to obtain such samples, we need a way to collect materials from radioactive waste. However, in the case of a permanently shut down nuclear power plant with a long operating history, human access is limited due to radiation of the material. In this study, we propose a method of remotely collecting samples that guarantees radiation protection and worker safety at the site where radioactive waste is located.
        48.
        2023.05 구독 인증기관·개인회원 무료
        Radioactive Oxide is formed on the surface of the coolant pipe of the nuclear power plant. In order to remove the oxide film that is formed on the surfaces of the coolant pipe, chemical and physical decontamination technologies are used. The disadvantage of traditional technologies is that they produce secondary radioactive wastes. Therefore, in this study, the short-pulsed laser eco-friendly technology was used in order to reduce the production of secondary radioactive wastes. It was also used to minimize the damage that was caused to the base material and to remove the contaminated oxide film. The study was carried out using a Stainless steel 304 specimen that was coated with nickel-ferrite particles. Additionally, a transport robot was 3D modeled and manufactured in order to efficiently remove the oxide film from the coolant pipe of the nuclear power plant. The transport robot has a fixed laser head to move inside the horizontal and vertical pipes. The rotating laser head removes the contaminated oxide film on the inner surface of the coolant pipe. In the future, as a condition of the 1064nm short-pulsed laser ablation technique determined by basic analysis, we plan to analyze whether the transport robot is applicable to the radiation contamination site of the nuclear power plant.
        49.
        2023.05 구독 인증기관·개인회원 무료
        With the rapid growth of nuclear power in China, a large number of dry wastes, which mainly include the high efficiency particulate air filters (glass fiber), cotton, polyethylene, and absorbent paper with low-level radioactivity and high volume, will be produced during the operation and maintenance of the nuclear power plants. Thermal plasma treatment is a world acceptable technology to incinerate and immobilize radioactive wastes, owing to the high volume reduction factor and the excellent chemical durability of the vitrified waste form. China has developed thermal plasma technology for the treatment of dry wastes from nuclear power plants for more than 15 years and the pilot plant has been constructed. This work will concentrate on the formulation of waste glass fiber to adapt to the vitrification process. A three-component (glass fiber-CaO-Na2O) constrained-region mixture experiment was designed and their viscosity data was mainly studied. The quadratic Scheffé model was used to plot the component effect on melting temperature. The retentions of simulated nuclides, such as Co, Sr, and Cs in the glasses were analyzed. In addition, the glass fiber as a glass matrix to immobilize residual ashes from the thermal plasma gasification of cotton, polyethylene, and absorbent paper was investigated as well.
        50.
        2023.05 구독 인증기관·개인회원 무료
        The nuclear power plant decommissioning project inevitably considers time, cost, safety, document, etc. as major management areas according to the PMBOK technique. Among them, document management, like all projects, will be an area that must be systematically managed for the purpose of information delivery and record maintenance. In Korea, where there is no experience in the decommissioning project yet, data management is systematically managed and maintained during construction and operation. However, if the decommissioning project is to be launched soon, it is necessary to prepare in consideration of the system in operation, what difference will occur from it in terms of data management, and how it should be managed. As a document that can occur in the decommissioning project, this study was considered from the perspective of the licensee. Therefore, the types of documents that can be considered at Level 1 can be divided into (1) corresponding documents, (2) project documents, (3) internal documents, and (4) reference materials. Four document types are recommended based on Level 1 for the classification of documents to be managed in the decommissioning of nuclear facilities. In this study, documents to be managed in the decommissioning project of nuclear facilities were reviewed and the type was to be derived. Although it was preliminary, it was largely classified into major categories 1, middle categories 2, and 3 levels, and documents that could occur in each field were proposed. As a result, it could be largely classified into corresponding documents, project documents, internal documents, and reference materials, and subsequent classifications could be derived. Documents that may occur in the decommissioning project must be managed by distinguishing between types to reduce the time for duplication or search, and the capacity of the storage can be efficiently managed. Therefore, it is hoped that the document types considered in this study will be used as reference materials for the decommissioning project and develop into a more systematic structure.
        51.
        2023.05 구독 인증기관·개인회원 무료
        The domestic Nuclear Power Plant (NPP) decommissioning project is expected to be carried out sequentially, starting with Kori Unit 1. As a license holder, in order to smoothly operate a new decommissioning project, a process in terms of project management must be well established. Therefore, this study will discuss what factors should be considered in establishing the process of decommissioning NPPs. Various standards have been proposed as project management tools on how to express the business process in writing and in what aspects to describe it. Representatively, PMBOK, ISO 21500, and PRICE 2 may be considered. It will be necessary to consider IAEA safety standards in the nuclear decommissioning project. GSR part 6 and part 2 can be considered as two major requirements. GSR part 6 presents a total of 15 requirements, including decommissioning plans, general safety requirements until execution and termination. GSR part 2 presents basic principles for securing the safety of nuclear facilities, and there are a total of 14 requirements. Domestic regulatory guidelines should be considered, and there will be largely laws and regulations related to the decommissioning of nuclear facilities, guidelines for regulatory agencies, and guidelines and regulations related to HSE. The Nuclear Safety Act, Enforcement Decree, Enforcement Rules, and NSSC should be considered in the applicable law for nuclear facilities. Since the construction and operation process has been established for domestic decommissioning project, there will be parts where existing procedures must be applied in terms of life cycle management of facilities and the same performance entity. As a management areas classification in the construction and operation stage, it seems that a classification similar to Level 1 and Level 2 should be applied to the decommissioning project. This study analyzed the factors to be considered in the management system in preparing for the first decommissioning project in Korea. Since it is project management, it is necessary to establish a system by referring to international standards, and it is suggested that domestic regulatory reflection, existing business procedures, and domestic business conditions should be considered.
        52.
        2023.05 구독 인증기관·개인회원 무료
        In case of Korea, unlike overseas nuclear power plants, adjacent units are located in permanently stopped nuclear power plants. Radioactive substances from airborne and liquid effluents are released into the environment from the NPP, and the radioactivity of the released substances must be reported to the regulatory authorities. Radioactive effluents are released into the environment not only in operation but also after permanent shutdown. Due to domestic conditions in which multiple units exist on the same site, it is necessary to consider radioactive effluents generated after permanent shutdown of NPPs. In particular, liquid effluent may have an increased tritium concentration due to draining the spent fuel pool. This paper summarizes the annual liquid emissions of PWR power plants that have been permanently shut down. The data was obtained from the Nuclear Regulatory Commission’s (NRC) annual radioactive effluent release report, which provides information on the annual emissions power plants into the environment. The liquid emissions of each plant were organized into an annual table, providing an overview of the amount of liquid released by each plant. This study aims to raise awareness about the potential environmental impact of permanently shut down nuclear power plants and the need for proper management of their liquid emissions. The findings of this study can used by operator, policymakers, and other stakeholders to make informed decisions regarding the decommissioning and management of nuclear power plants.
        53.
        2023.05 구독 인증기관·개인회원 무료
        Metal waste generated during the dismantling of a nuclear power plant can be contaminated with radionuclides. In general, the internal structure is very complex. Thus, metal waste requires various cutting processes. When metal waste is cut, aerosols are generated. Aerosols are generally various particles of very small size suspended in the working area and remain for a considerable period. This may cause internal exposure of workers due to inhalation of radioactive aerosols generated when cutting radioactive metal waste. This study investigated various cutting processes and the size distribution of aerosols generated during the cutting process. The cutting process is normally classified into thermal cutting, mechanical cutting, and laser cutting. Thermal cutting includes plasma, flame, and oxygen cutting. Mechanical cutting includes mechanical saws, cutters, nibblers, and abrasive water jets. Stainless steel, carbon steel, aluminum, and copper are commonly used as cutting materials in nuclear power plants. The size of the aerosol generated from cutting showed a very diverse distribution depending on the cutting methods and cutting materials. In general, aerosol size is distributed within 0.1-1 μm. This size distribution is different from the 5 μm aerosol size suggested by the ICRP Publication 66 Lung model. These results show that it is necessary to conduct further studies on the size of aerosols generated when decommissioning nuclear power plants.
        54.
        2023.05 구독 인증기관·개인회원 무료
        Laser cutting has been recognized as one of key techniques in dismantling nuclear power plants as it has several advantages such as a remote operation and a reduced secondary waste. However, it generates a significant amount of aerosols that can pose a health risk to workers and further induce environmental pollution during the cutting operation. Thus, understanding the aerosol characteristics generated by the laser cutting is crucial for implementing an effective cutting operation and reducing the exposure to these hazardous particles. In this work, we established a methodology to collect the aerosols and investigate their properties in the laser cutting operation. We built an integrated laser cutting system for aerosol analyses, consisting of a high-power laser cutting module, a metal sample holder, an aerosol collector, and a closed chamber. We expect that this system will offer an opportunity for in-depth understanding of the aerosol properties, by connecting it with desired type of aerosol analysis platforms, and further safe dismantling operation of the nuclear power plants.
        55.
        2023.05 구독 인증기관·개인회원 무료
        Domestic nuclear power plants developed the scaling factors for the radioactive waste generated from 2004 to 2008 for the first time. Afterwards, the effectiveness of continuous application of the scaling factors have been evaluated for newly generated radioactive waste over the past two years. It was confirmed that most of the initially developed scale factors were effective within a factor of 10 principle, which is an acceptable range. The scaling factors were updated using the analysis data base from 2004 to 2016. A scaling factor refers to the calculated abundance ratio between Key (Easy-to- Measure) and DTM (Difficult-to-Measure) nuclide at the time of generation of radioactive waste based on the source term in the reactor of an operating nuclear power plant. The effectiveness of continuous application of scaling factors can be evaluated at regular intervals regardless of operation status or when there are events that change scaling factors during nuclear power plant operation, such as zinc injection, large-scale facility replacement, and long-term shutdown etc. Even in the case of a permanently shut down nuclear power plant in which fuel is withdrawn from the reactor and generation of new nuclides by nuclear fission and radiation has stopped, periodic verification is conducted to confirm whether the scaling factor developed before permanent shutdown can be effectively applied to the radioactive waste generated after permanent shutdown. However, depending on the nuclear power plant decommissioning strategy or conditions, the period of permanent shutdown prior to decommissioning can be very long, so preparations are needed to ensure the appropriateness of scaling factor operation. In the case of domestic nuclear power plants, Kori Unit 1, a light water reactor, was permanently shut down in June 2017, and as a heavy water reactor nuclear power plant, the permanent shutdown of Wolseong Unit 1 was finally decided in December 2019 after twists and turns including large-scale facility replacement and long-term shutdown. In this paper, we have predicted when the scaling factors will change significantly due to radioactive decay and the difference in halflife between the Key and DTM nuclides over time after permanent shutdown. We also have tried to find appropriate countermeasures for the operation of scaling factors during permanent shutdown period, such as updating scaling factors or applying correction factors.
        56.
        2023.05 구독 인증기관·개인회원 무료
        As the decommissioning of nuclear power plants progresses, interest in the inevitably generated radioactive waste is also increasing. Especially, because the containers of ILW packages are significantly more expensive than the containers of LLW packages, the special attention should be focused on minimizing the number of the containers of ILW packages. The radiation dose limit for packaging of ILW shall not exceed 2 mSv/h and 0.1 mSv/h on contact and at 2 m, respectively in South Korea. Meanwhile, The DEMplus provides various environmental geometry and all properties such as materials, absorptions, and reflections and the estimation of the radiation dose rates is based on the radiation interactions of the designed 3D geometry model. With the consideration of the radiation dose rate by using DEMplus and its strategy of packaging and cutting plan, the number of containers for ILW packages generated from decommissioning of Reactor Vessel Internal (RVI) of a nuclear power plant that has been in operation for decades was optimized in this paper. The modular shielded containers (MSC) with shielding inserted were used for radioactive wastes that require shielded packaging. In order to verify the accuracy of the estimated radiation dose rate by using DEMplus, the estimated results were compared with those obtained using MicroShield. The trends of the estimated radiation dose rates using DEMplus and the estimation of MicroShield were similar to each other. The results of this study demonstrated the feasibility of using DEMplus as a means of estimating the radiation dose limit in packaging plan of the radioactive waste.
        57.
        2023.05 구독 인증기관·개인회원 무료
        Korea currently has two permanent shutdown Nuclear Power Plants (NPPs), and the decommissioning project is expected to begin soon, starting with the first commercial NPP. The decommissioning project will eventually be the disposal of radioactive waste in the final stage of the work, and in that respect, proper tracking and history management should be well established in the management of waste. This is in line with the guidelines that regulatory agencies should also properly manage radioactive waste. Therefore, this study intends to examine the factors that should be considered in terms of tracking and management of radioactive waste in decommissioning nuclear facilities. The starting and final point of tracking radioactive waste generated during decommissioning is the physical inventory of the current as-is state and the final container. In this respect, the tracking of waste starts from the beginning of the dismantling operation. Thus, at the stage of approval of the decommissioning work, it may begin with an ID scheme, such as the functional location in operation for the target System, Structure, and Components (SSCs). As the dismantling work progresses, SSCs will be classified by nature and radiological level, which will be placed in containers in small packaging units. At this time, the small package should be given an ID. After that, the dismantling work leads to the treatment of waste, which involves a series of operations such as cutting, decomposition, melting, and decontamination. Each step in which these tasks are performed will be placed in a container, and ID assignment is also required. Until now, the small packaging container is for transfer after each treatment, and it is placed in the storage container in the final stage, at which time the storage container also gives a unique ID. Considerations for follow-up management were reviewed assuming solid waste, which is the majority of dismantled radioactive waste considered in this study. The ID system should be prepared from the start of the dismantling work, ID generation of the small transporting container and ID generation of the final disposal container during the intermediate waste treatment process, and each ID generation of the previous stage should be linked to each generation stage. In addition, each ID must be generated, and the definition of the grant scheme and attributes is required.
        58.
        2023.05 구독 인증기관·개인회원 무료
        The purpose of this study is to provide technical issues in upgrade and modification of fuel handling equipment at operating nuclear power plants. The improvement for safety function and performance enhancement of fuel handling equipment has been going on for 20 years since the early 2000’s. This improvement is recently focused on the replacement of components through the performance analysis and the operation and maintenance plan based on replacement cycle of its component. Additionally, it is required to secure spare parts so that it can be operated at all times with compatibility and standardization to other domestic nuclear power plants. The fuel handling equipment is consisted of refueling machine, upender and carriage of fuel transfer system, spent fuel handling machine, new fuel elevator and various tools, and the equipment are linked in systematic interlocks. Fuel handling is a critical task during a nuclear power plant refueling outage. Even minor component defects may stop operation of the whole system and have a significant impact on the overall system process. To achieve this goal, major components that are expected to be replaced for reliable operation are summarized as follows; 1) motor assembly with AC servomotors and driver for bridge, trolley and hoist of refueling machine and spent fuel handling machine, 2) winch motor and drive for upender and carriage of fuel transfer system, 3) operator control console with a HMI PC base PLC (Programmable Logic Controller) control system, 4) positioning and load weighing sensors such as an encoder and a load cell with its support for periodic calibration and maintenance, 5) main power drapped style festoon cable assembly for bridge of refueling machine, 6) pneumatic control assembly for gripper operation of refueling machine, 7) active components (e. g., air motor, hydraulic cylinder and limit switch) to be removable and reinstallable without requiring the water level to be lowered. It is advisable to utilize such various information as it can help to improve reliability of fuel handling as a critical path in upgrade and modification of fuel handling equipment at operating nuclear power plants.
        59.
        2023.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 논문에서는 LS-DYNA를 활용한 원자력발전소 설치 로드블록 차량 시뮬레이션 방법을 소개한다. 차량 강습 위협이 원자력 발전 소의 설계기준위협으로 포함된 이후로 차량 강습을 대비하기 위한 차량 방벽(Anti-ram barrier)의 성능 평가 소요가 커지고 있다. 차량 방벽은 일반적으로 충돌 실험을 통하여 성능을 인증 받는다. 하지만 국내에서는 차량 방벽에 대한 성능 시험 시설이 마련되어 있지 않 아, 시뮬레이션을 통한 차량 방벽 성능 검증이 필요하다. LS-DYNA는 충돌 시뮬레이션에 특화되어 있으며, NCAC를 비롯한 여러 기 관에서 충돌 시험과의 타당성 검증을 완료한 수치 모델을 배포하고 있다. 본 논문에서는 로드블록의 가장 핵심적인 차량 차단막 모듈 의 FE 모델을 구축하여 충돌 시뮬레이션을 수행하였다. 계산된 결과는 NCHRP 179의 차량 안전 시설 충돌 시뮬레이션 검증 기준을 준용하여 검증하였다. 그 결과 모래시계 에너지(hourglass energy)가 총 에너지의 5%를 넘지 않고 내부 에너지의 10%를 넘지 않는 것 을 확인하였으며, added mass가 1% 미만으로 기준인 10%를 넘지 않는 것을 확인하였다. 향후 FE 모델을 활용하여 물리적 방벽의 성 능을 평가하여 데이터 베이스를 구축할 예정이다.
        4,000원
        60.
        2023.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        With rising concerns about pesticide spray drift by aerial application, this study attempt to evaluate aerodynamic property and collection efficiency of spray drift according to the leaf area index (LAI) of crop for preventing undesirable pesticide contamination by the spray-drift tunnel experiment. The collection efficiency of the plant with ‘Low’ LAI was measured at 16.13% at a wind speed of 1 m·s-1. As the wind speed increased to 2 m·s-1, the collection efficiency of plant with the same LAI level increased 1.80 times higher to 29.06%. For the ‘Medium’ level LAI, the collection efficiency was 24.42% and 43.06% at wind speed of 1 m·s-1 and 2 m·s-1, respectively. For the ‘High’ level LAI, it also increased 1.24 times higher as the wind speed increased. The measured results indicated that the collection of spray droplets by leaves were increased with LAI and wind speed. This also implied that dense leaves would have more advantages for preventing the drift of airborne spray droplets. Aerodynamic properties also tended to increase as the LAI increased, and the regression analysis of quadric equation and power law equation showed high explanatory of 0.96-0.99.
        4,000원
        1 2 3 4 5