In this work, iron oxide (Fe3O4) nanoparticles were deposited on multi-walled carbon nanotubes (MWNTs) by a simple chemical coprecipitation method and Fe3O4-decorated MWNTs (Fe-MWNTs)/polypyrrole (PPy) nanocomposites (Fe-MWNTs/PPy) were prepared by oxidation polymerization. The effect of the PPy on the electrochemical properties of the Fe-MWNTs was investigated. The structures characteristics and surface properties of MWNTs, Fe-MWNTs, and Fe-MWNTs/PPy were characterized by X-ray diffraction and X-ray photoelectron spectroscopy, respectively. The electrochemical performances of MWNTs, Fe-MWNTs, and Fe-MWNTs/PPy were determined by cyclic voltammetry and galvanostatic charge/discharge characteristics in a 1.0 M sodium sulfite electrolyte. The results showed that the Fe-MWNTs/PPy electrode had typical pseudo-capacitive behavior and a specific capacitance significantly greater than that of the Fe-MWNT electrode, indicating an enhanced electrochemical performance of the Fe-MWNTs/PPy due to their high electrical properties.
A investigation of electrochemical analysis of antibiotics Neomycin (C23H46N6O13) was searched using electrochemical square wave (SW) stripping and cyclic voltammetry (CV) using working sensor of the modified carbon nanotube combination electrodes, optimum diagnostic parameters were searched by anodic stripping, final conditions were attained to working range of 1.0-14.0 ng/L, detection limit (S/N) was found to be 0.6 ng/L. The developed method was discovered to be fitting in quality control in the food, pharmaceutical and other manufacturing sectors.
Nanocomposite films were made by a simple solution casting method in which multi-walled carbon nanotubes (MWCNT) and magnetite nanoparticles (Fe3O4) were used as dopant materials to enhance the electrical conductivity of chitosan nanocomposite films. The films contained fixed CNT concentrations (5, 8, and 10 wt%) and varying Fe3O4 content. It was determined that a 1:1 ratio of CNT to Fe3O4 provided optimal conductivity according to dopant material loading. X-ray diffraction patterns for the nanocomposite films, were determined to investigate their chemical and phase composition, revealed that nanoparticle agglomeration occurred at high Fe3O4 loadings, which hindered the synergistic effect of the doping materials on the conductivity of the films.
We report on the NO gas sensing properties of Al-doped zinc oxide-carbon nanotube (ZnO-CNT) wire-like layered composites fabricated by coaxially coating Al-doped ZnO thin films on randomly oriented single-walled carbon nanotubes. We were able to wrap thin ZnO layers around the CNTs using the pulsed laser deposition method, forming wire-like nanostructures of ZnO-CNT. Microstructural observations revealed an ultrathin wire-like structure with a diameter of several tens of nm. Gas sensors based on ZnO-CNT wire-like layered composites were found to exhibit a novel sensing capability that originated from the genuine characteristics of the composites. Specifically, it was observed by measured gas sensing characteristics that the gas sensors based on ZnO-CNT layered composites showed a very high sensitivity of above 1,500% for NO gas in dry air at an optimal operating temperature of 200˚C; the sensors also showed a low NO gas detection limit at a sub-ppm level in dry air. The enhanced gas sensing properties of the ZnO-CNT wire-like layered composites are ascribed to a catalytic effect of Al elements on the surface reaction and an increase in the effective surface reaction area of the active ZnO layer due to the coating of CNT templates with a higher surface-to-volume ratio structure. These results suggest that ZnO-CNT composites made of ultrathin Al-doped ZnO layers uniformly coated around carbon nanotubes can be promising materials for use in practical high-performance NO gas sensors.
We discuss the influence of few-walled carbon nanotubes (FWCNTs) treated with nitric acid and/or sulfuric acid on field emission characteristics. FWCNTs/tetraethyl orthosilicate (TEOS) thin film field emitters were fabricated by a spray method using FWCNTs/TEOS sol one-component solution onto indium tin oxide (ITO) glass. After thermal curing, they were found tightly adhered to the ITO glass, and after an activation process by a taping method, numerous FWCNTs were aligned preferentially in the vertical direction. Pristine FWCNT/TEOS-based field emitters revealed higher current density, lower turn-on field, and a higher field enhancement factor than the oxidized FWCNTs-based field emitters. However, the unstable dispersion of pristine FWCNT in TEOS/N,N-dimethylformamide solution was not applicable to the field emitter fabrication using a spray method. Although the field emitter of nitric acid-treated FWCNT showed slightly lower field emission characteristics, this could be improved by the introduction of metal nanoparticles or resistive layer coating. Thus, we can conclude that our spray method using nitric acid-treated FWCNT could be useful for fabricating a field emitter and offers several advantages compared to previously reported techniques such as chemical vapor deposition and screen printing.
The use of carbon nanotubes (CNTs) as a reinforcing material in a polymer matrix has in-creased in various industries. In this study, the flexuralbehavior of CNT-modifiedepoxy/basalt (CNT/epoxy/basalt) composites is investigated. The effects of CNT modificationwith silane on the flexuralproperties of CNT/epoxy/basalt composites were also examined. Flexural tests were performed using epoxy/basalt, oxidized CNT/epoxy/basalt, and silanized CNT/epoxy/basalt multi-scale composites. After the flexuraltests, the fracture surfaces of the specimens were examined via scanning electron microscopy (SEM) to investigate the fracture mechanisms of the CNT/epoxy/basalt multi-scale composites with respect to the CNT modificatio process. The flexuralproperties of the epoxy/basalt composites were im-proved by the addition of CNTs. The flexuralmodulus and strength of the silane-treated CNT/epoxy/basalt multi-scale composites increased by approximately 54% and 34%, re-spectively, compared to those of epoxy/basalt composites. A SEM examination of the frac-ture surfaces revealed that the improvement in the flexuralproperties of the silane-treated CNT/epoxy/basalt multi-scale composites could be attributed to the improved dispersion of the CNTs in the epoxy.
We present the effect of a coupling agent on the optoelectrical properties of few-walled carbon nanotube (FWCNT)/epoxy resin hybrid films fabricated on glass substrates. The FWCNT/epoxy resin mixture solution was successfully prepared by the direct mixing of a HNO3-treated FWCNT solution and epoxy resin. FWCNT/binder hybrid films containing different amounts of the coupling agent were then fabricated on UV-ozone-treated glass substrates. To determine the critical binder content (Xc), the effects of varying the binder content in the FWCNT/silane hybrid films on their optoelectrical properties were investigated. In this system, the Xc value was approximately 75 wt%. It was found that above Xc, the coupling agent effectively decreased the sheet resistance of the films. From microscopy images, it was observed that by adding the coupling agent, more uniform FWCNT/binder films were formed.
We investigated tribological characteristics of diamond-like carbon (DLC) in a condition with carbon nanotube (CNT) content of 1wt% in aqueous solution. Si-DLC films were deposited by radio frequency plasma enhanced chemical vapor deposition (RF-PECVD) process on Al6061 aluminum alloy. In this study, the deposition of DLC films was carried out in vacuum with a chamber pressure of 10-5 to 10-3 Torr achieved by mechanical pump followed by turbo molecular pump. The surface adsorbed oxygen on the Aluminum substrates was removed by passing Ar gas for 10 minutes. The RF power was maintained at 500W throughout the experiment. A buffer layer of HMDSO was deposited on the substrate to improve the adhesion of DLC coating. At this point CH4 gas was introduced in the chamber using gas flow controller and DLC coating was deposited on the buffer layer along with HMDSO for 50 min. The thickness of 1 μm was obtained for DLC films on aluminum substrates The tribological properties of as synthesized DLC films were analyzed by wear test in the presence of dry air, water and lubricant such as CNT ink.
Gold have been used as an electrode materials having a good mechanical flexibility as well as electrical conductivity, however the stretchability of the gold on a flexible substrate is poor because of its small elastic modulus. To overcome this mechanical inferiority, the reinforcing gold is necessary for the stretchable electronics. Among the reinforcing materials having a large elastic modulus, carbon nanotube (CNT) is the best candidate due to its good electrical conductivity and nanoscale diameter. Therefore, similarly to ferroconcrete technology, here we demonstrated gold electrodes mechanically reinforced by inserting fabrics of CNTs into their bodies. Flexibility and stretchability of the electrodes were determined for various densities of CNT fabrics. The roles of CNTs in resisting electrical disconnection of gold electrodes from the mechanical stress were confirmed using field emission scanning electron microscope and optical microscope. The best mechanical stability was achieved at a density of CNT fabrics manufactured by 1.5 ml spraying. The concept of the mechanical reinforced metal electrode by CNT is the first trial for the high stretchable conductive materials, and can be applied as electrodes materials in various flexible and stretchable electronic devices such as transistor, diode, sensor and solar cell and so on.
In this work, fabrication and electrochemical analysis of an individual multi-walled carbon nanotube (MWNT) electrode are carried out to confirm the applicability of electrochemical sensing. The reactive ion etching (RIE) process is performed to obtain sensitive MWNT electrodes. In order to characterize the electrochemical properties, an individual MWNT is cut by RIE under oxygen atmosphere into two segments with a small gap: one segment is applied to the working electrode and the other is used as a counter electrode. Electrical contacts are provided by nanolithography to the two MWNT electrodes. Dopamine is specially selected as an analytical molecule for electrochemical detection using the MWNT electrode. Using a quasi-Ag/AgCl reference electrode, which was fabricated by us, the nanoelectrodes are subjected to cyclic voltammetry inside a 2μL droplet of dopamine solution. In the experiment, RIE power is found to be a more effective parameter to cut an individual MWNT and to generate "broken" open state, which shows good electrochemical performance, at the end of the MWNT segments. It is found that the pico-molar level concentration of analytical molecules can be determined by an MWNT electrode. We believe that the MWNT electrode fabricated and treated by RIE has the potential for use in high-sensitivity electrochemical measurement and that the proposed scheme can contribute to device miniaturization.
This study investigates the effect of filler content (wt%), presence of interphase and agglomerates on the effective Young's modulus of polypropylene (PP) based nanocomposites reinforced with exfoliated graphite nanoplatelets (xGnPTM) and carbon nanotubes (CNTs). The Young's modulus of the composites is determined using tensile testing based on ASTM D638. The reinforcement/polymer interphase is characterized in terms of width and mechanical properties using atomic force microscopy which is also used to investigate the presence and size of agglomerates. It is found that the interphase has an average width of ~30 nm and modulus in the range of 5 to 12 GPa. The Halpin-Tsai micromechanical model is modified to account for the effect of interphase and filler agglomerates and the model predictions for the effective modulus of the composites are compared to the experimental data. The presented results highlight the need of considering various experimentally observed filler characteristics such as agglomerate size and aspect ratio and presence and properties of interphase in the micromechanical models in order to develop better design tools to fabricate multifunctional polymer nanocomposites with engineered properties.
A method of functionalization of multi-walled carbon nanotube (MWNT) at room temperature using dry ozone gas is described. The resulting MWNT were characterized by Fourier transform infrared, x-ray photoelectron spectroscopy, and scanning electron microscopy. Combined to these analyses and solubility in liquids, it could be concluded that the dry ozone gas exposure introduces polar functional groups such as carboxylic groups to MWNT similar to acidic modification of MWNT. Particularly, the stable dispersion of MWNT in water after ozone treatment above a critical level could be obtained, implying potential bio-application. The hydrophilic functional groups on the MWNT introduced by ozone oxidation were helpful in improving the interaction with functional groups in PA6 such as -NH2 and -CONH- resulting in improved mechanical properties.
Recently, the use of thermal conductive polymeric composites is growing up, where the polymers filled with the thermally conductive fillers effectively dissipate heat generated from electronic components. Therefore, the management of heat is directly related to the lifetime of electronic devices. For the purpose of the improvement of thermal conductivity of composites, fillers with excellent thermally conductive behavior are commonly used. Thermally conductive particles filled polymer composites have advantages due to their easy processibility, low cost, and durability to the corrosion. Especially, carbon-based 1-dimensional nanomaterials such as carbon nanotube (CNT) and carbon nanofiber (CNF) have gained much attention for their excellent thermal conductivity, corrosion resistance and low thermal expansion coefficient than the metals. This paper aims to review the research trends in the improvement of thermal conductivity of the carbon-based materials filled polymer composites.
The composites of alginate, carbon nanotube, and iron(III) oxide were prepared for the removal of heavy metal in aqueous pollutant. Both alginate and carbon nanotube were used as an adsorbent material and iron oxide was introduced for the easy recovery after removal of heavy metal to eliminate the secondary pollution. The morphology of composites was investigated by FE-SEM showing the carbon nanotubes coated with alginate and the iron oxide dispersed in the alginate matrix. The ferromagnetic properties of composites were shown by including iron(III) oxide additive. The copper ion removal was investigated with ICP AES. The copper ion removal efficiency increased greatly over 60% by using alginate-carbon nanotube composites.
In this work, the effect of aminized multi-walled carbon nanotubes (NH-MWNTs) on the mechanical interfacial properties of epoxy nanocomposites was investigated by means of fracture toughness, critical stress intensity factor (KIC), and impact strength testing, and their morphology was examined by scanning electron microscope (SEM). It was found that the incorporation of amine groups onto MWNTs was confirmed by the FT-IR and Raman spectra. The mechanical interfacial properties of the epoxy nanocomposites were remarkably improved with increasing the NH-MWNT content. It was probably attributed to the strong physical interaction between amine groups of NH-MWNTs and epoxide groups of epoxy resins. The SEM micrographs showed that NH-MWNTs were uniformly embed and bonded with epoxy resins, resulted in the prevention of the deformation and crack propagation in the NH-MWNTs/epoxy nanocomposites.
Carbon-nanotube-embedded bismuth telluride (CNT/) matrix composites were fabricated by a powder metallurgy process. Composite powders, whereby 5 vol.% of functionalized CNTs were homogeneously mixed with alloying powders, were successfully synthesized by using high-energy ball milling process. The powders were consolidated into bulk CNT/ composites by spark plasma sintering process at for 10 min. The fabricated composites showed the uniform mixing and homogeneous dispersion of CNTs in the matrix. Seebeck coefficient of CNT/ composites reveals that the composite has n-type semiconducting characteristics with values ranging to with increasing temperature. Furthermore, the significant reduction in thermal conductivity has been clearly observed in the composites. The results showed that CNT addition to thermoelectric materials could be useful method to obtain high thermoelectric performance.
Titanium dioxide (TiO2) particles deposited on different quantitative Fe-treated carbon nanotube (CNT) composites with high photocatalytic activity of visible light were prepared by a modified sol-gel method using TNB as a titanium source. The composites were characterized by BET, XRD, SEM, TEM and EDX, which showed that the BET surface area was related to the adsorption capacity for each composite. From TEM images, surface and structural characterization of for the CNT surface had been carried out. The XRD results showed that the Fe-ACF/TiO2 composite mostly contained an anatase structure with a Fe-mediated compound. EDX results showed the presence of C, O, and Ti with Fe peaks in the Fe-CNT/TiO2 composites. The photocatalytic activity of the composites was examined by degradation of methylene blue (MB) in aqueous solution under visible light, which was found to depend on the amount of CNT. The highest photocatalytic activity among the different composites was related to the optimal content of CNT in the Fe-CNT/TiO2 composites. In particular, the photocatalytic activity of the Fe-CNT/TiO2 composites under visible light was better than that of the CNT/TiO2 composites due to the introduction of Fe particles.
The characteristics of all polymer composites containing carbon materials are determined by four factors: component properties, composition, structure and interfacial interactions. The most important filler characteristics are particle size, size distribution, specific surface area and particle shape. As a consequence, in this paper we discuss the aspects of the mechanical, electrical and thermal properties of composites with different fillers of carbon black, carbon nanotube (CNT), graphene and graphite and focus on the relationship between factors and properties, as mentioned above. Accordingly, we fabricate rubber composites that contain various carbon materials in carbon black-based and silica based-SBR matrixes with dual phase fillers and use scanning electron microscopy, Raman spectroscopy, a rhometer, an Instron tensile machine, and a thermal conductivity analyzer to evaluate composites' mechanical, fatigue, thermal, and electronic properties. In mechanical properties, hardness and 300%-modulus of graphene-composite are sharply increased in all cases due to the larger specific surface. Also, it has been found that the thermal conductivity of the CNT-composite is higher than that of any of the other composites and that the composite with graphene has the best electrical properties.
Transparent conductive films of single wall carbon nanotube (SWCNT) were prepared by spray coating method. The effect of acid treatment on the SWCNT films was investigated. The field emission scanning electron microscope (FESEM) shows that acid treatment can remove dispersing agent. The electrical and optical properties of acid-treated films were enhanced compared with those of as deposited SWCNT films. Nitric acid (HNO3), sulfuric acid (H2SO4), nitric acid:sulfuric acid (3:1) were used for post treatment. Although all solutions reduced sheet resistance of CNT films, nitric acid can improve electrical characteristics efficiently. During acid treatment, transmittance was increased continuously with time. But the sheet resistance was decreased for the first 20 minutes and then increased again. Post-treated SWCNT films were transparent (85%) in the visible range with sheet resistance of about 162Ω/sq. In this paper we discuss simple fabrication, which is suitable for different types of large-scale substrates and simple processes to improve properties of SWCNT films.
Si nanowire/multiwalled carbon nanotube nanocomposite arrays were synthesized. Vertically aligned Si nanowire arrays were fabricated by Ag nanodendrite-assisted wet chemical etching of n-type wafers using HF/AgNO3 solution. The composite structure was synthesized by formation of a sheath of carbon multilayers on a Si nanowire template surface through a thermal CVD process under various conditions. The results of Raman spectroscopy, scanning electron microscopy, and high resolution transmission electron microcopy demonstrate that the obtained nanocomposite has a Si nanowire core/carbon nanotube shell structure. The remarkable feature of the proposed method is that the vertically aligned Si nanowire was encapsulated with a multiwalled carbon nanotube without metal catalysts, which is important for nanodevice fabrication. It can be expected that the introduction of Si nanowires into multiwalled carbon nanotubes may significantly alter their electronic and mechanical properties, and may even result in some unexpected material properties. The proposed method possesses great potential for fabricating other semiconductor/CNT nanocomposites.