검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 412

        121.
        2016.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : The purpose of this study is to develop a method for improving the accuracy of analysis results obtained from a twodimensional (2-D) numerical analysis model of continuously reinforced concrete pavement (CRCP). METHODS: The analysis results from the 2-D numerical model of CRCP are compared with those from more rigorous three-dimensional (3- D) models of CRCP, and the relationships between the results are recognized. In addition, the numerical analysis results are compared with the results obtained from field experiments. By performing these comparisons, the calibration factors used for the 2-D CRCP model are determined. RESULTS : The results from the comparisons between 2-D and 3-D CRCP analyses show that with the 2-D CRCP model, concrete stresses can be overestimated significantly, and crack widths can either be underestimated or overestimated by a slight margin depending on the assumption of plane stress or plane strain. The behaviors of crack width in field measurements are comparable to those obtained from the numerical model of CRCP. CONCLUSIONS: The accuracy of analysis results from the 2-D CRCP model can be improved significantly by applying calibration factors obtained from comparisons with 3-D analyses and field experiments.
        4,200원
        122.
        2016.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : The use of roller-compacted concrete pavement (RCCP) is an environmentally friendly method of construction that utilizes the aggregate interlock effect by means of a hydration reaction and roller compacting, demonstrating a superb structural performance with a relatively small unit water content and unit cement content. However, even if an excellent structural performance was secured through a previous study, the verification research on the environmental load and long-term durability was conducted under unsatisfactory conditions. In order to secure longterm durability, the construction of an appropriate internal air-void structure is required. In this study, a method of improving the long-term durability of RCCP will be suggested by analyzing the internal air-void structure and relevant durability of roller-compacted concrete. METHODS: The method of improving the long-term durability involves measurements of the air content, air voids, and air-spacing factor in RCCP that experiences a change in terms of the kind of air-entraining agent and chemical admixture proportions. This test should be conducted on the basis of test criteria such as ASTM C 457, 672, and KS F 2456. RESULTS : Freezing, thawing, and scaling resistance tests of roller compacted concrete without a chemical admixture showed that it was weak. However, as a result of conducting air entraining (AE) with an AE agent, a large amount of air was distributed with a range of 2~3%, and an air void spacing factor ranging from 200 to 300 ㎛ (close to 250 ㎛) coming from PCA was secured. Accordingly, the freezing and thawing resistance was improved, with a relative dynamic elastic modulus of more than 80%, and the scaling resistance was improved under the appropriate AE agent content rate. CONCLUSIONS: The long-term durability of RCCP has a direct relationship with the air-void spacing factor, and it can be secured only by ensuring the air void spacing factor through air entraining with the inclusion of an AE agent.
        4,000원
        123.
        2016.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES: This study aims to develop a repair material that can enhance pavement performance, inducing rapid traffic opening through early strength development and fast setting time by utilizing MgO-based patching materials for repairing road pavements. METHODS : To consider the applicability of MgO-based patching materials for repairing domestic road pavements, first, strength development and setting time of the materials were evaluated, based on MgO to KH2PO4 ratio, water to binder ratio, and addition ratio of retarder (Borax), by which the optimal mixture ratio of the developed material was obtained. To validate the performance of the developed material as a repair material, the strength(compressive strength and bonding strength) and durability (freezing, thawing, and chloride ion penetration resistance) was checked through testing, and its applicability was evaluated. RESULTS : The results showed that when an MgO-based patching material was used, the condensation time was reduced by 80%, and the compressive strength was enhanced by approximately 300%, as compared to existing cement-based repair materials. In addition, it was observed that the strength (compressive strength and bonding strength) and durability (freezing and thawing, and chloride ion penetration resistance) showed an excellent performance that satisfied the regulations. CONCLUSIONS : The results imply that an emergent repair/restoration could be covered by a rapid-hardening cement to meet the traffic limitation (i.e. the traffic restriction is only several hours for repair treatment). Furthermore, MgO-based patching materials can improve bonding strength and durability compared to existing repair materials.
        4,500원
        124.
        2015.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : The use of environmentally friendly construction methods has been recently encouraged to reduce fuel consumption and the effects of global warming. For this purpose, the roller compacted concrete pavement (RCCP) construction method has been developed. RCCP is more environmentally friendly and economically efficient than general concrete by reducing the amount of CO2 generated through the application of a smaller amount of cement. RCCP has a number of advantages such as an easy construction method, low cost, high structural hydration performance, and aggregate interlocking. However, mix design standards and construction guidelines of RCCP are required for domestic application. In addition, a study on aggregate selection, which has an effect on the characteristics of RCCP, is necessary owing to a limited number of researches. Thus, the aggregate effect on the performance of RCCP in securing the required strength and workability was evaluated in consideration of domestic construction. METHODS : Sand and coarse aggregates of both 19mm and 13mm in maximum size were used in this study. Four types of aggregate gradations (s/a = 30%, 58%, and 70% for the sand and coarse aggregate of 19mm in maximum size, and s/a = 50% for a combination of the three types of aggregates) were set up to investigate the effects of the PCA band on the RCC characteristics. The conditions of s/a = 30% and 70% were evaluated to check the gradation effect outside of the recommended band. The conditions of s/a = 58% and 50% were used because they are the optimum combination of the two and three types of aggregates, respectively. RCCP gradation band was suggested gradation with a proper construction method of RCCP by synthetically comparing and analyzing the correlation of optimum water content, maximum dry density, and strength of requirements through its consistency and compaction test. RESULTS : The lower and upper limit lines are insufficient to secure a relatively strong development and workability compared to an aggregate gradation in the RCCP gradation band region. On the other hand, the line in the RCCP gradation band and the 0.45 power curve in the RCCP gradation band region were satisfactory, ensuring the required strength and workability. CONCLUSIONS: The suitable aggregate gradation on RCCP process should meet the RCCP gradation band area; however, fine particles passing through a #60 sieve do not need to be within the recommended gradation band because the influence of this region on such fine particles is small.
        4,000원
        125.
        2015.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES: To ensure appropriate RCC properties with sufficient strength development and workability, it is necessary to secure a proper level of consistency. It is also necessary to secure maximum dry density, which is an important factor for increasing the interaction of aggregate interlocking, leading to an augmentation of RCC strength. On the other hand, the dry density of RCC can be changed owing to the compaction conditions, water content, and particle size distribution. A Proctor test and a modified Proctor test were used for determining the optimum water content needed to achieve maximum dry density with different amounts of compaction energy. A Vebe test, on the other hand, was used for checking the level of consistency, which is important for producing a workable mixture. METHODS : To confirm the degree of compaction at various particle sizes, RCC mixtures with different sand/aggregate ratios were evaluated. The Proctor test and modified Proctor test were applied to these mixtures to check the effect of the aggregate gradation and compaction energy on the maximum dry density and optimum water content. During each test, three specimens were produced for all types of water content under each aggregate gradation. A compaction curve and the optimum water content and maximum dry density for each aggregate gradation were then obtained for both tests. The range of water content for the appropriate consistency of each aggregate gradation was determined through a Vebe test. The optimum water content was then evaluated based on this range. RESULTS : The compaction test results show that the modified Proctor test provides a higher maximum dry density and lower optimum water content compared with the standard Proctor test. For the modified Proctor test, two cases of aggregate gradation (s/a = 30% and 70%) had the optimum water contents outside of the appropriate water content range. For the standard Proctor test, on the other hand, none of aggregate gradations provided the optimum water content within the desired range. CONCLUSIONS : The modified Proctor test should be used for an RCC mixture design because it can provide adequacy between maximum dry density and consistency. Moreover, the compaction roller has become highly developed for higher compaction energy.
        4,000원
        126.
        2015.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Cracking is an inevitable fact of asphalt concrete pavements and plays a major role in pavement deterioration. Pavement cracking is one of the main factors determining the frequency and method of repair. Cracks can be treated with a number of preventative maintenance actions, including overlay surface treatments such as slurry sealing, crack sealing, or crack filling. Pavement cracks can show up as one or all of the following types: transverse, longitudinal, fatigue, block, reflective, edge, and slippage. Crack sealing is a frequently used pavement maintenance treatment because it significantly extends the pavement service life. However, crack sealant often fails prematurely due to a loss of adhesion. Because current test methods are mostly empirical and only provide a qualitative measure of the bond strength, they cannot accurately predict the adhesive failure of the sealant. This study introduces a laboratory test aimed at assessing the bonding of hot-poured crack sealant to the walls of pavement cracks. A pneumatic adhesion tensile testing instrument (PATTI) was adopted to measure the bonding strength of the hot-poured crack sealant as a function of the curing time and temperature. Based on a limited number of test results, the hot-poured crack sealants have very different bonding performances. Therefore, this test method can be proposed as part of a newly developed performancebased standard specification for hot-poured crack sealants for use in the future. PURPOSES : The purpose of this study was to evaluate both the adhesion and failure performance of a crack sealant as a function of its curing time and curing temperature. METHODS: A pneumatic adhesion tensile testing instrument (PATTI) was adopted to measure the adhesion performance of a crack sealant as a function of the curing time and curing temperature. RESULTS: With changes in the curing time, curing temperature, and sealant type, the bond strengths were found to be significantly different. Also, higher bond strengths were measured at lower temperatures. Different sealant types produced completely different bond strengths and failure behaviors. CONCLUSIONS: The bonding strength of an evaluated crack sealant was shown to differ depending on various factors. Two sealant types, which were composed of different raw materials, were shown to perform differently. The newly proposed test offers the possibility of evaluating anddifferentiatingbetweendifferentcracksealants.Basedonalimitednumberoftestresults,this test method can be proposed as part of a newly developed performance-based standard specification for crack sealants or as part of a guideline for the selection of hot-poured crack sealant in the future.
        4,000원
        127.
        2015.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES: This paper describes the expansion caused by the alkali-aggregate reaction (AAR) in concrete pavement currently in service. It also discusses the effects of joints installed to release the stress induced by the AAR expansion. METHODS: The expansion effect on concrete pavement was verified by a visual inspection and long-term measurement of the joint width of a cut-section. The behaviors of 16 newly installed joints were monitored as part of the investigation and long-term monitoring was carried out for three years after cutting. RESULTS: The behavior of a bridge was affected when AAR occurred in the connected pavement. The newly installed joints shrank in the longitudinal direction of the bridge after cutting. The width of the joints decreased over the six months after cutting. A large portion of the joint width (8.5cm) was found to have closed nine months after cutting. It had ultimately shrunk by about 92 percent when the final measurement was taken. CONCLUSIONS : The expansion of the pavement due to AAR was quantitatively described by visual inspection and the long-term monitoring of the newly cut joints. However, the width of the new joints decreased over the six to nine months after cutting. Additional research should be conducted to determine a means of controlling the expansion due to AAR in the pavement.
        4,000원
        128.
        2015.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : Recently, attempts have been made to evaluate tire-pavement noise based on a measure of Mean Profile Depth (MPD). However, equivalent values of MPD appear to correspond to different levels of tire-pavement noise, which indicates that other factors such as texture wavelength need to be included to improve the accuracy of noise prediction. A single index to represent texture wavelength is proposed in this study. A consistent relationship between tire-pavement noise and texture wavelength on asphalt concrete pavement is observed. METHODS: Profile data and tire-pavement noise data were collected from a number of expressway sections in Korea. In addition, texture wavelength was defined by a Peak Number (PN), which was calculated using profile data. Statistical analysis was performed to find the relationship between the PN and tire-pavement noise. RESULTS: As a result of this study, a linear relationship between PN and tire-pavement noise is observed on asphalt concrete pavement. CONCLUSIONS: Tire-pavement noise on asphalt concrete pavement can be predicted from PN information.
        4,000원
        129.
        2014.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES: The objective of this study is to evaluate the tack-coating material’s properties using the bitumen bond strength(BBS) test and damping test as function of changed curing times. In this study, bonding strength tests were performed according to the curing time of tack coating materials. METHODS : In order to investigate bonding characteristic of tack coating materials, the Pneumatic Adhesion tensile Testing Instrument(PATTI) device is used to measure the bond strength between the tack coating materials and aggregate substrate based on the AASHTO TP-91. Also, damping test as in situ test was used to determine an appropriate traffic openting time for construction vehicle. Four different tack-coating materials were used in this study. The BBS tests were performed a one hour curing and testing temperatures of 5℃, 15℃, and 25℃. Damping test was conducted at 30min, 60min, 90min, and 120 min of curing times with temperatures of 20℃ and 30℃. RESULTS and CONCLUSIONS : The BBS test results show various bond strength as function of tack coat materials. At the same testing condition, A tack coat material shows almost two times higher than D tack coat materials although both materials are satisfied the criteria of material’s physical properties. Also, Dampting test results shows similar trend with BBS test result. The damping test result was significantly changed as function of tack coat materials. Based on this study, the tack coating material’s curing time is very important. Therefore, both curing time and the bond strength’s characteristic has to be considered in standard specification.
        4,000원
        130.
        2014.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES: The purpose of this study is to evaluate the degree of restraint (DOR) of longitudinal steel at continuously reinforced concrete pavement (CRCP) against environmental loadings. METHODS : To measure the longitudinal steel strain, 3-electrical resistance and self-temperature compensation gauges were installed to CRCP test section (thickness = 250mm, steel ratio = 0.7%) and continuously measured 10 min. intervals during 259 days. In order to properly analyze the steel strains first, temperature compensation process has been conducted. Secondly, measured steel strains were divided into 12 phases with different events such as before paving, during concrete hardening, and after first cracking, etc. RESULTS : Thermal strain rate (TSR) concept is defined as the linear strain variations with temperature changes and restraints rate of longitudinal steel against environmental loadings (especially thermal loading) with different cases is defined as degree of restraint(DOR). New concept of DOR could be indirect indicator of crack width behaviors of CRCP. CONCLUSIONS: Before paving, DOR of longitudinal steel is almost same at the coefficient of thermal expansion of steel (12.44m/m/℃) because of no restraint boundary condition. After concrete pouring, DOR is gradually changed into -1 due to concrete stiffness developing with hydration. After first cracking at crack induced area, values of DOR are around -3~-5. The negative DOR stands for the crack width behavior instead of steel strain behavior. During winter season, DOR reached to -5.77 as the highest, but spring this values gradually reduced as -1.7 as the lowest. Based on this observation, we can presume crack width decreased over time within the time frame of this study. This finding is not consistent with the current theory on crack width variations over time, so further study is necessary to identify the causes of crack width reducing. One of the reasons could be related to concrete stress re-distribution and stress relaxation.
        4,000원
        131.
        2014.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES: The purpose of this paper is showing that the state of pavement sublayers can be evaluated differently according to direction of FWD. METHODS: The concrete pavement slabs above subgrade without anything, subgrade with cavity, and box culvert were modeled by finite element method(FEM). The modeled pavements were analyzed by changing the direction of falling weight deflectometer(FWD). The deflection results obtained from FEM were used to calculate radius of relative stiffness and composite modulus of subgrade reaction using AREA method. Then, the analyzed results were compared to the results of the test performed at the Korea Expressway Corporation(KEC) test road. RESULTS : The composite modulus of subgrade reaction increased with subgrade elastic modulus, while radius of relative stiffness decreased. The pavement sections of pure earth showed the consistent results regardless of FWD direction. In case there was cavity, the radius of relative stiffness was larger and composite modulus of subgrade reaction was smaller when FWD was leaving the cavity than when approaching the cavity. This pattern became clear when the cavity got larger. In case of the section with box culvert, the pattern was opposite to the case of cavity. When the soil cover depth increased, the effect of box culvert got smaller. When the load was applied far from the cavity and box culvert, the effect was also declined. The test performed at the KEC test road showed identical results to those of finite element analysis. CONCLUSIONS : The direction of FWD should be considered in evaluation of the state of pavement sublayers because it can be evaluated differently even under identical condition.
        4,000원
        132.
        2014.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : The purpose of this study is to analyse the longitudinal steel strain and stress of continuously reinforced concrete pavement(CRCP) with longitudinal and transverse direction at early age using stress dependent strain analysis method. METHODS : To measure the longitudinal steel strain, 9-electrical resistance and self-temperature compensation gauges were installed to CRCP test section (thickness = 250mm, steel ratio = 0.7%) and continuously measured 10min. intervals during 30days. In order to properly analyze the steel stress first, temperature compensation process has been conducted. Secondly, measured steel strains were divided into stress dependent strain (elastic strain) and stress independent strain (thermal strain) and then stress dependent strain was applied to stress calculation of longitudinal steels. RESULTS: Steel strains were successfully measured during 30days. To verify the accuracy of temperature compensation process, measured coefficient of thermal expansion(COTE,11.46×10-6m/m/℃) of longitudinal steel before paving was compared with that of unrestrained steel. Max. steel stress in the transverse direction shows about 266MPa at 23days after placement. CONCLUSIONS: Steel stresses in the longitudinal and transverse direction have been evaluated. In longitudinal direction, steel stress from the crack was rapidly reduced from 183MPa at crack to 18MPa from 600mm apart the crack. From this observation, stress effective length can be identified as within 600mm apart from the crack. In transverse direction, max. stress point was located near the center of pavement width and stress level(266MPa) is about 66% of yield stress of steel
        4,000원
        133.
        2014.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : The purpose of this article is to compare and evaluate the riding comfort of a passenger in tunnels depending on different surface textures of concrete pavement. METHODS: Evaluation of riding comfort is conducted at 17 sections, which have different surface texture such as transverse tinned(TT), longitudinal tinned(LT) and diamond grinded(DG). A triaxial accelerometer was set up on the passenger seat surface of the test vehicle to measure vibrations of an occupant, then the effects of vibration on comfort and health were evaluated by ISO 2631. And microphones were installed at passenger's ears height to measure sound pressure level(SPL) in the test vehicle. Additionally, a surface microphone was installed on the inside of wheel arch to evaluate noise between tire and pavement by NCPX method. All tests were conducted cruising at 100km/h. RESULTS : The results of all tests are as follows. First, both vibration magnitudes for comfort and for health in LT and DG sections are almost same and they represent lower than those in TT sections. Second, the average SPL of DG shows the lowest decibels among them. And third, it is founded that interior noise is significantly affected by noise between tire and pavement. CONCLUSIONS : It may be concluded that DG can provide more excellent riding comfort to passenger than LT or TT. Therefore, it is necessary to consider applying DG to existing pavement surface to improve surface condition when the driving environment especially requires riding comfort like a long tunnel.
        4,000원
        134.
        2014.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES: The objective of this study is to evaluate construction issues and design for transverse steel in continuously reinforced concrete pavement(CRCP). METHODS : The first continuously reinforced concrete pavement(CRCP) design procedure appeared in the 1972 edition of the“ AASHTO Interim Guide for Design of Pavement Structures,”which was published in 1981 with Chapter 3 “Guide for the Design of Rigid Pavement” revised. A theory that was accepted at that time for the analysis of steel stress in concrete pavement, called subgrade drag theory(SGDT), was utilized for the design of reinforcement of CRCP - tie bar design and transverse steel design - in the aforementioned AASHTO Interim Guide. However SGDT has severe limitations due to simple assumptions made in the development of the theory. As a result, any design procedures for reinforcement utilizing SGDT may have intrinsic flaws and limitations. In this paper, CRCP design procedure for transverse steel was introduced and the limitations of assumptions for SGDT were evaluated based on various field testing. RESULTS: Various field tests were conducted to evaluate whether the assumptions of SGDT are reasonable or not. Test results show that 1) temperature variations exist along the concrete slab depth, 2) very little stress in transverse steel, and 3) warping and curling in concrete slab from the field test results. As a result, it is clearly revealed out that the assumptions of SGDT are not valid, and transverse steel and tie bar designs should be based on more reasonable theories. CONCLUSIONS : Since longitudinal joint is provided at 4.1-m spacing in Korea, as long as joint saw-cut is made in accordance with specification requirements, the probability of full-depth longitudinal cracking is extremely small. Hence, for transverse steel, the design should be based on the premise that its function is to keep the longitudinal steel at the correct locations. If longitudinal steel can be placed at the correct locations within tolerance limits, transverse steel is no longer needed.
        4,000원
        135.
        2014.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES: This study is to suggest tunnel length to spray curing compound, based on the field tests. METHODS : At first field test, length from the entrance of tunnel to wet wall was checked by visual survey. The second and third test, various sensors were installed in concrete or in tunnel, such as RH sensor, temperature sensor, portable weather station and etc.. And also, test for bleeding and retaining water of concrete were conducted to evaluate environmental effect on concrete pavement. RESULTS: The result of the field experiment for tunnel length to spray curing compound indicates that length changes depending on tunnel length, season, and location. Environmental condition of a short tunnel was not much different between location near entrance and at center of tunnel. However, in case of a medium and long tunnel, effect of outside environmental condition decreased, when location moved into tunnel center of it. CONCLUSIONS: From the testing results, it can be proposed that optimum tunnel length to spray curing compound is 60m for a medium and long tunnel, and whole length for a short tunnel.
        4,000원
        136.
        2014.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : This paper numerically evaluates the contribution of transverse steel to the structural behavior of continuously reinforced concrete pavements to understand the role of transverse steel. METHODS: Two-lane continuously reinforced concrete pavements with and without transverse steel were analyzed through finite element analysis with the aid of commercial finite element analysis program DIANA; the difference in their structural behavior such as deflection, joint opening, and stress distribution was then evaluated. Twenty-node brick elements and three-node beam elements were used to model concrete and steel, respectively. Sub-layers were modeled with horizontal and vertical tensionless spring elements. The interactions between steel and surrounding concrete were considered by connecting their nodes with three orthogonal spring elements. Both wheel loading and environmental loading in addition to self-weight were considered. RESULTS : The use of transverse steel in continuously reinforced concrete pavements does not have significant effects on the structural behavior. The surface deflections change very little with the use of transverse steel. The joint opening decreases when transverse steel is used but the reduction is quite small. The transverse concrete stress, rather, increases when transverse steel is used due to the restraint exerted by the steel but the increase is quite small as well. CONCLUSIONS : The main role of transverse steel in continuously reinforced concrete pavements is supporting longitudinal steel and/or controlling unexpected longitudinal cracks rather than enhancing the structural capacity.
        4,000원