본 연구에서는 입자크기가 다른 3가지 α-알루미나 분체로부터 주입성형법과 소결법을 혼용하여 튜브형 α-알루 미나 지지체를 제조하여 초기 α-알루미나 분체의 입자크기와 소결 온도가 지지체의 기공구조와 기체투과 특성에 미치는 영 향을 고찰하였다. 평균입경이 0.2, 0.5, 1.7 μm인 α-알루미나 분체를 사용했을 시 제조된 α-알루미나 지지체는 각각 약 80, 130, 200 nm의 평균 기공경을 가졌으며 평균 기공경은 소결 온도 보다는 초기 알루미나 분체의 입자크기에 의존하였다. 모 든 시편에서 소결 온도가 증가할수록 지지체의 부피 밀도는 증가하였고 겉보기 기공률은 감소하였다. He, N2, O2, CO2에 대 하여 30°C에서 단일기체 투과 특성을 평가한 결과, 기체 투과도는 기공경 제곱에 비례하여 증가하였고 기공률이 증가함에 따 라서 직선적으로 증가하였다. 이를 토대로 제조된 α-알루미나 지지체의 기체 투과는 점성유동(viscous flow)에 의하여 이루 어지며, α-알루미나 지지체의 기체 투과 특성은 초기 α-알루미나 분체의 입자크기와 소결온도를 제어함으로써 조절될 수 있 음을 확인할 수 있었다.
본 연구에서는 입자크기가 다른 3가지 α-알루미나 분말로 부터 주입성형법과 소결법을 혼용하여 튜브형 α-알루미나 지지체 제작하였고 이때에 초기 α-알루 미나 분말의 입자크기와 소결 온도가 지지체의 기공구조와 기공구조가 투과 특 성에 미치는 영향을 고찰하였다. 제작 된 지지체는 수은함침법과 Archimedes 법을 통하여 기공경과 기공률을 측정하였다. 또한 30°C에서 He, N2, O2, CO2 기체에 대하여 투과 특성을 고찰하여, 각 지지체의 토튜오서티를 계산 하였으며, 지지체의 기공경 및 기공률이 지지체의 기체 투과 특성에 미치는 영향을 고찰 하였다.
본 연구에서는 평균입경 0.2, 0.5, 1,7㎛ 크기의 α-알루미나 분말을 이용하여 다공성 α-알루미나 지지체의 기공구조를 조절하고자 하였다. 다공성 α-알루미나 지지체는 슬립캐스팅공법을 이용하여 제조한 후 소결하였으며, 이 때 소결 온도가 지지체의 기공특성에 미치는 영향에 대하여 고찰하였다. 제조된 다공성 α-알루미나 지지체는 수은기공분석기를 이용하여 기공크기 및 기공률 등을 분석하였으며, 단일기체투과장치를 이용하여 기체 투과도를 측정하였다. 그 결과 평균입경 0.2, 0.5, 1.7㎛ 크기의 α-알루미나 분말을 이용하여 제조된 지지체는 각각 80, 130, 200㎚의 기공경을 가졌으며, CO2 단일기체에 대해 각각 1300, 1700, 5000GPU를 나타냈다.
본 연구에서는 silicalite-1 제올라이트 분리막 합성 시에 종결정 코팅용액 pH 변화가 제올라이트 분리층 미세구조에 미치는 영항을 고찰하였다. 75 nm 크기로 합성된 종결정은 에탄올에 분산된 후 침지코팅법으로 지지체 표면에 코팅되었으며 분산용액의 pH는 2.2, 7.0, 9.3으로 조절되었다. pH가 7인 경우, 균일하고 두께가 3~4 μm인 silicalite-1 제올라이트 분리층이 형성되었고 분리층 결정입 크기는 100 nm로 미세하였다. 반면, pH가 2.2와 9.3인 경우, 분리층 두께가 얇고 불완전하였으며 분리층 결정입 크기도 약 1 μm로 조대하였다. pH 7에서 완전한 제올라이트 분리층이 형성된 것은 침지코팅 중에 지지체와 종 결정이 서로 다른 부호의 전하를 가져 정전기적 인력이 작용하여 균일하고 조밀하며 두껍고 다층의 종결정 코팅층이 형성되었 기 때문이었다. 반면에 pH가 2.2와 9.3인 경우, 침지코팅 중에 지지체와 종결정이 서로 같은 부호의 전하를 가져 정전기적 반 발력이 작용하기 때문에 불완전한 덮힘에 의하여 불완전한 분리층이 형성된다고 판단되었다. 결론적으로, 종결정 코팅용액의 pH가 silicalite-1 제올라이트 분리층의 두께, 결정립 크기 등 미세구조를 결정하는 중요한 인자임을 확인할 수 있었다.
본 연구에서는 평균입경 0.2, 0.5㎛ 크기의 α-알루미나 분말을 이용하여 다공성 α-알루미나 지지체의 기공구조를 조절하고자 하였다. 다공성 α-알루미나 지지체는 슬립캐스팅공법을 이용하여 제조한 후 소결하였으며, 이 때 소결 온도가 지지체의 수축률 및 소결거동 등에 미치는 영향에 대하여 고찰하였다. 제조된 다공성 α-알루미나 지지체는 수은기공분석기를 이용하여 기공크기 및 기공률 등을 분석하였으며, 단일기체투과장치를 이용하여 기체 투과도를 측정하였다. 그 결과 평균입경 0.5㎛ 크기의 α-알루미나 분말을 이용하여 제조된 지지체의 경우, 평균 입경 0.2㎛ 크기의 α-알루미나 분말을 이용하여 제조된 지지체에 비하여 기공크기가 크고 기공률이 높았으며, 기체투과도가 높을 것을 알 수 있었다.
본 연구에서는 종결정 코팅층이 NaA 제올라이트 분리막 형성에 미치는 영향에 대하여 고찰하였다. NaA 제올라이트 분리막은 평균입경 100 nm 종결정을 다공성 α-알루미나 표면에 진공여과 코팅하고 100˚C에서 24시간 수열처리하여 합성되었다. 이때 지지체 표면에 분포된 종결정 양을 조절한 후 형성된 NaA 제올라이트 분리층의 두께와 결정입 크기 등 미세구조에 미치는 영향에 대하여 고찰하였다. 종결정 코팅 양은 지지체를 통과한 종결정 수용액의 여과 양을 조절하여 제어하였다. 종결정을 단일층으로 코팅한 후 합성하였을 경우, 코팅 양이 증가함에 따라 분리층 단면에서의 두께와 균일도는 증가하였으며, 표면에서의 결정입 크기는 감소하면서 균일도는 증가하였다. 반면, 종결정을 다층으로 코팅한 후 합성하였을 경우, 균일한 분리층을 형성하였지만 단일층으로 코팅된 경우에 비하여 불균일하였으며 두꺼운 분리층이 형성되었다. 균일하고 초박형의 결함이 없는 제올라이트 분리층을 형성하기 위해서는 종결정을 균일하고 단일층으로 코팅하여야 함을 알 수 있었다. 본 연구로부터 종결정의 코팅 상태가 이차성장에 의한 NaA 제올라이트 분리층의 미세구조를 결정하는 중요한 인자임을 확인할 수 있었다.
A porous α-alumina tube of 2.5 ㎜ O.D. and 1.9 ㎜ I.D. was used as the support of an inorganic membrane. Macropores of the tube, about 150 nm in size, were plugged with silica formed by thermal decomposition of tetraethylorthosillcate at 600℃. The forced cross-flow CVD method that reactant was evacuated through the porous wall of the support was very effective in plugging macropores. The H_2 permeance of the prepared membrane was of the order of 10^-8 mol s^-1 m^-2 . Pa^-1, while the N_2 permeance was below 10^-11 mol. s^-1 . m^-2 . Pa^-1 at 600℃. This was comparable to that of silica-modified Vycor glass whose size was 4 nm.