This study aims to estimate the trawl net width based on the design drawing and towing condition of sampling trawl used in past surveys to improve the accuracy of estimation for fishery resources. To this end, the trawl gear was modeled as a flexible structure and numerically analyzed, and the analysis results were subjected to multiple regression analysis. As a result, a model was derived to calculate the net width by the towing conditions. When the towing conditions from past surveys were input into this model, it was confirmed that the net width increased in a natural logarithmic manner with the increase in the warp length and that decreased linearly as the water depth increased at the same warp length. For verification of the model, the theoretical formula of other study and this model were compared. As a result, despite the values of the two were slightly different, the tendency of changing net width by increasing warp length was consistent each other. Therefore, it is thought that the derived model can obtain the net width according to various towing conditions and can contribute to improving the accuracy of fishery resources estimation.
The towing distance, which is speed over the ground, and the water flow quantity, which is speed through the water, were used when estimating the amount of Metapenaeus joyneri resources that rose to the surface at night using the swept area method in order to compare and analyze the difference. It was conducted using a shrimp dredge, trial fishing gear for catching Metapenaeus joyneri. Catch during the entire survey period was 188.9 kg. Monthly catch ranged from 3.1 to 109.2 kg, highest in June and lowest in September. The swept volume calculated using the speed over the ground was about 13% higher than using the speed through the water. Metapenaeus joyneri resources estimated using the towing distance ranged from 320.1 to 14,649.8 kg. Resources estimated using the water flow quantity ranged from 278.5 to 12,886.3 kg. Therefore, the amount of Metapenaeus joyneri resources estimated using the speed over the ground was about 14% higher than the method using the speed through the water, indicating that the amount of resources was overestimated.
Estimation of the gear shape and cross section of sweep at mouth of a bottom trawl net was described and applied to the field experiments obtained with the Scanmar system. The shape of the trawl net from wingend to the beginning of codend was assumed to be part of an elliptic cone of which the cross section was ellipse, and that of the float rope be of form yf=afxbf. In case of a bottom trawl with warp 180m long, the radius of ellipse, the cross section of sweep at mouth, the eccentricity of the ellipse, the inclination angle of float rope and the contribution of the side panel to net height were estimated in accordance with towing speed. The horizontal radius of the upper ellipse increased with increasing towing speed, the eccentricity of it became slightly bigger as increasing the towing speed which meant the shape of it being flat. And the inclination angle of the float rope was about between 7 and 12 degrees in case of the above bottom trawl.
중층트를 어구(漁具)의 소해심도(掃海深度)를 일정(一定)한 적정어획속도(適正漁獲速度)에서 기동성(機動性)있게 변화(變化)시키기 위하여 기초적인 모형어구(模型漁具)의 수조실험(水槽實驗)과 특별(特別)히 고안한 깊이바꿈틀을 이용(利用)한 이차(二次)에 걸친 해상시험(海上試驗)을 통(通)하여 연구한 결과를 요약(要約)하면 다음과 같다. 1. 중층(中層)트롤의 그물어구의 깊이 y는 끌줄의 길이 L과 단위(單位) 길이의 끌줄, 깊이바꿈틀 및 그물의 각(各) 수중중량(水中重量) $W_r,\;W_o,\;W_n$과 각(各) 항력(抗力) $R_r,\;R_o,\;R_n$ 사이의 관계(關係)는 차원해석법(次元解析法)에 의하면 다음과 같다. $$y=kLf(\frac{W_r}{R_r},\;\frac{W_o}{R_o},\;\frac{W_n}{R_n})$$ 단(但), k는 상수(常數)이고 f는 함수이다. 2. 단위 길이당(當)의 수중중량(水中重量) $W_r$, 길이 L인 끌줄 끝에 항력(抗力) $D_n$, 수중중량(水中重量) $W_n$d인 수중저항분를 매달고 끌줄의 다른 한 끝을 수면(水面)에서 예인(曳引)할 때,. 끌줄의 형상(形狀)을 현수곡선이라고 보면, 수중저항분의 깊이 y는 다음과 같다. $$y=\frac{1}{W_r}\{\sqrt{{D_n^2}+{(W_n+W_rL)^2}}-\sqrt{{D_n^2+W_n}^2\}$$ 3. 중층(中層)트롤의 그물어구(漁具)깊이의 변화(變化) ${\Delta}y$는 예강(曳綱)의 길이 L을 바꾸거나 추(錘) ${\Delta}W_n$를 부가(附加)하면 다음과 같다. $${\Delta}y{\approx}\frac{W_n+W_{r}L}{\sqrt{D_n^2+(W_n+W_{r}L)^2}}{\Delta}L$$ $${\Delta}y{\approx}\frac{1}{W_r}\{\frac{W_n+W_rL}{\sqrt{D_n^2+(W_n+W_{r}L)^2}}-{\frac{W_n}{\sqrt{D_n^2+W_n^2}}\}{\Delta}W_n$$ 단(但), $D_n$은 그물어구의 항력(抗力)이다. 4. 끌줄 상(上)의 중간점(中間点)에 추(錘) $W_s$를 부가(附加)할 때 중층(中層)트롤 그물어구의 깊이바꿈 ${\Delta}y$는 $${\Delta}y=\frac{1}{W_r}\{(T_{ur}'-T_{ur})-T_u'-T_u)\}$$ 단(但) $$T_{ur}^l=\sqrt{T_u^2+(W_s+W_{r}L)^2+2T_u(W_s+W_{r}L)sin{\theta}_u$$ $$T_{ur}=\sqrt{T_u^2+(W_{r}L)^2+2T_uW_{r}L\;sin{\theta}_u$$ $$T_{u}'=\sqrt{T_u^2+W_s^2+2T_uW_{s}\;sin{\theta}_u$$ $T_u$ 추(錘)를 부가(附加)하지 않았을 때 끌줄 상(上)의 중간점(中間点)에 있어서의 예인어선(曳引漁船) 쪽을 향하는 장력(張力)이고, ${\theta}_u$는 장력(張力) $T_u$와 수평방향(水平方向)과 이루는 각도(角度)이다. 5. 어떠한 형태(形態)의 저예강용(底曳綱用) 전개판(展開板)도 성능(性能)에 있서어 차이는 있으나 전중량(全重量)을 가볍게 하고 저변(底邊)에 무게를 달아 안정(安定)시키면 중층예강용(中層曳綱用)으로 사용(使用)할 수 있다는 것이 모형(模型) 실험(實驗)결과 밝혀졌다. 6. 모형(模型) 그물(Fig.6)의 수조실험(水槽實驗)에서는 예강속도(曳綱速度) v m/sec, 강고(綱高) H cm 및 수유저항(水流抵抗) R kg 사이에는 다음과 같은 간단(簡單)한 관계식(關係式)이 성립(成立)한다. $$H=8+\frac{10}{0.4+v}$$$R=3+9v^2$$ 7. 특별(特別)히 고안한 십자(十字)날개형(型) 깊이바꿈틀과 H날개형(型) 깊이 바꿈틀을 비교(比較)한 결과(結果) 전자(前者)보다 안정성(安定性)이 우월하였다. 8. 그물어구(漁具)의 유수저항(流水抵抗)이 매우 크며 또 거의가 항력(抗力)으로 볼 수 있으므로 깊이바꿈틀의 종류에 관계없이 그물어구의 소해심도(掃海深度)는 대단히 안정(安定)된 상태를 유지하였다. 9. H날개형(型) 깊이바꿈틀의 수평(水平)날개 면적율 $1.2{\times}2.4m^2$로 하였을 때 유수저항(流水抵抗) 2 ton의 그물 어구를 2.3kts로 예인(曳引)하면서 영각(迎角)을 $0^{\circ}{\sim}30^{\circ}$로 변화(變化)시킨 결과(結果), 끌줄의 길이에 관계없이 약(約) 20m의 깊이바꿈을 얻을 수 있었다.