This study evaluated the effectiveness of odor reduction when spraying inside the Bio-curtain (hereinafter referred to as curtain) according to the exhaust fan operating rate. Spraying is a main factor affecting the ability to odor reduction of curtains. The curtain (total area: 37.9m3) was constructed with two layers of light-shielding screens stretched over a rectangular parallelepiped structure installed around an exhaust fan (630 mm) on the side wall of a pig barn. Air samples for odor analysis were collected from inside the pig barn and outside the curtain. The main odorous compounds such as volatile fatty acids, phenols, indoles, and ammonia were measured. The odor reduction effectiveness was evaluated by total odor activity values (TOAVs) summed to the odor activity values of each odorous compounds. Depending on the exhaust fan operating rate, the reduced rate of TOAVs gradually decreased to the range between 15.67% and 68.80%. Because the contact time between the spraying liquid and the air velocity of the exhaust fan becomes shorter (or there is a reduction in liquid to gas flow ratio) as the exhaust fan operating rate increases. The results of this study can be used as basic data for research into spraying conditions to improve the odor reduction effectiveness of curtains.
The purposes of this research are to modelize test system of SM TESTING by ARENA, software, input several items of specimen’s testing process, resources of system and transfer loop, etc, give a hypothesis and then, obtain results reducing the efficiency of the whole system finally by overload of specific facilities in the testing system through the simulation so as to obtain several materials such as specimen and testing facility, transfer loop, etc. by simple and various forms without any necessity of numerical modelization. It will add facilities of over load and reduce facilities with low operation rate, so increase the efficiency of the system.
본 연구는 울산항의 정박지 규모의 적정성을 평가하기 위한 방법을 제시하고, 이를 통해 현재 뿐만 아니라 항만개발에 따른 미래의 정박지 규모의 적정성을 분석하는데 그 목적이 있다. 이를 위해 울산항의 정박지 적정성 평가를 위한 정박지 가동률 개념을 제시하였다. 그리고 이 가동률 개념을 울산항의 2014년 정박지에 적용하여 가동률을 계산한 결과 모든 정박지에서 가동률이 100 %를 넘지 않는 것으로 도출되어, 추가 정박지 지정이 필요하지 않은 것으로 분석되었다. 또한 울산항의 2020년 가동률을 추정한 결과 E1정박지가 168.3 %로 가장 높았으며, E3정박지가 131.1 %, E2정박지가 118.5 %, 그리고 M정박지가 108.7 %인 것으로 계산되어, 2020년에는 정박지가 부족할 것으로 판단된다. 따라서 울산항의 항만개발에 따른 정박지 가동률을 100 % 수준으로 낮추기 위해서는 E1정박지는 11척, E2정박지는 1척, E3정박지는 2척, M정박지는 1척이 추가적으로 정박할 수 있는 수역이 필요할 것으로 분석되었다.
This paper aims to develop a new chain metrics for obtaining lean Overall Equipment Effectiveness(OEE) and present implementation strategy which considers the properties for Total Productive Maintenance(TPM) to reduce machine losses, Performance Analysis and Control(PAC) to reduce labor losses, Lean Production System(LPS) to reduce floor wastes, and Theory of Constraints(TOC) to minimize the problem of Capacity Constrained Resource(CCR). The study reviews the related literatures and reformulates the structure of machine losses, labor losses and field wastes. The research also develops the integrated productivity metrics according to time, units, reliability and maintainability. It is found that the study develops the actual productivity measure in terms of efficiency, effectiveness and standard productivity. In addition to that, it outlines and develops by using the integrated LPS and TPM, lean OEE measures such as Time Based Productivity(TBP), Unit Based Productivity(UBP), and Reliability & Maintainability Based Availability(RMBA). Implication examples are proposed to make it easier and available for practioners to understand the implementation strategies about TPM OEE, lean OEE and TOC OEE. Futhermore related to other studies, the research contributes to create a new chain productivity measures to clear the interrelationship concepts of productivity, efficiency and effectiveness. Moreover the paper develops the enhanced OEE measures by integration of TPM, PAC, LPS and TOC with the perspective of schedule, throughput, reliability, maintainability and availability.
It has been a major issue to repair the broken system quickly for improvement of productivity and utilization. Generally, high utilization of system requires the high amount of spare parts in inventory and inventory cost. Therefore, it is necessary to d