검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 17

        1.
        2020.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구에서 적용한 SMRPF system은 구조물 접합부의 패널존을 고려하는 동시에 지진하중에 대하여 각층별 전단력을 산정하여 댐퍼의 감쇠력과 변위를 결정해준다. 이는 내진설계가 반영되지 않은 구조물에 적용할 경우 부재단면을 변경하지 않고 내진성능을 확보 할 수 있는 감쇠기의 역량 결정이 가능함을 보여 주었다. 또한 본 논문에서 적용한 유전자 알고리즘을 통해 최적설계를 수행한 결과, 무보강 구조물에 비해 점성감쇠기와 패널존을 고려한 SMRPF 강골조 구조물의 총 중량이 약 50%이상 감소되는 것이 확인되었다.
        4,000원
        2.
        2020.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The present study is aimed to calculate the optimal damping according to the seismic load on the structure with a non-seismic design to perform structure analysis considering the deformation of structural joint connection and panel zone; to develop design program equipped with structural stability of the steel frame structures reinforced with the panel zone and viscous dampers, using the results of the analysis, in order to systematically integrate the seismic reinforcement of the non-seismic structures and the analysis and design of steel frame structures. The study results are as follows: When considering the deformation of the panel zone, the deformation has been reduced up to thickness of the panel double plate below twice the flange thickness, which indicates the effect of the double plate thickness on the panel zone, but the deformation showed uniform convergence when the ration is more than twice. The SMRPF system that was applied to this study determines the damping force and displacement by considering the panel zone to the joint connection and calculating the shear each floor for the seismic load at the same time. The result indicates that the competence of the damper is predictable that can secure seismic performance for the structures with non-seismic design without changing the cross-section of the members.
        4,000원
        3.
        2017.04 구독 인증기관·개인회원 무료
        Numerical behavior of FRP(Fiber Reinforced Polymer) panel in steel frame structure was evaluated through the finite element analysis in this study. In order to numerical analysis, a experimental test results was used to develop a three dimensional finite element model of steel frame specimen. Numerical results of the steel frame specimen was well predicted the experimental behavior of steel frame specimen. Based on the developed three dimensional finite element model of steel frame specimen, the behavior of FRP panel in the steel frame specimen was evaluated. From the numerical analysis results, strength of the steel frame specimen with FRP panel was governed by FRP panel. Also, diagonal compression behavior governed the FRP panel in the steel frame specimen in the numerical analysis results.
        4.
        2017.04 구독 인증기관 무료, 개인회원 유료
        Two steel-frame joint specimens with welding joint parts were constructed and evaluated. Two types of displacement load, monotonic and cyclic, were used to evaluate the steel-frame joint specimens. According to the experimental results, the maximum moment of the cyclic test results was 80% smaller than that of the monotonic test results. Local buckling was observed in the compression area of the H-beam flange. A finite element analysis model based on the experimental results was proposed to analyze the steel-frame joint specimens. The numerical results predicted the experimental behavior of the steel-frame joint specimens well. Therefore, it is possible to use the proposed finite element analysis model to evaluate middle- and low-rise steel-frame buildings constructed in South Korea.
        3,000원
        5.
        2017.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        A behavior of FRP(Fiber Reinforced Polymer) panel in a steel frame structure was evaluated through the finite element analysis in this study. In order to numerical analysis, a experimental test results was used to develop a three dimensional finite element model of steel frame specimen. Numerical results of the steel frame specimen was well predicted the experimental behavior of steel frame specimen. Based on the developed three dimensional finite element model of steel frame specimen, the behavior of FRP panel in the steel frame specimen was evaluated. From the numerical analysis results, strength of the steel frame specimen with FRP panel was governed by FRP panel. Also, diagonal compression behavior governed the FRP panel in the steel frame specimen in the numerical analysis results.
        4,000원
        6.
        2016.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Abstract: In this study, finite element analysis modeling is proposed to evaluate middle- and low-rise steel-frame buildings constructed in South Korea. Two steel-frame joint specimens with welding joint parts were constructed and evaluated. Two types of displacement load, monotonic and cyclic, were used to evaluate the steel-frame joint specimens. According to the experimental results, the maximum moment of the cyclic test results was 80% smaller than that of the monotonic test results. Local buckling was observed in the compression area of the H-beam flange. A finite element analysis model based on the experimental results was proposed to analyze the steel-frame joint specimens. The numerical results predicted the experimental behavior of the steel-frame joint specimens well. Therefore, it is possible to use the proposed finite element analysis model to evaluate middle- and low-rise steel-frame buildings constructed in South Korea.
        4,000원
        7.
        2016.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        It has been many efforts for reinforcement of existing structure since the number of earthquake has been increased world widely. Especially the occurrence of earthquake surrounding area of Korean peninsular is dramatically increased. Since the buildings in Korea have not been designed to carry the lateral and shear force caused by earthquake, the building will experience massive damages even under moderate earthquake. For this reason, the viscoelastic damper is proposed in this paper to enhance the earthquake resistance of a steel frame buildings. The viscoelastic dampers have been able to increase the overall damping of the structure significantly, hence improving the overall performance of dynamically sensitive structures. In this paper, Viscoelastic dampers designed are consists of FRP panel and viscoelastic material. In this paper, evaluate the performance of the viscoelastic damper through the experiment.
        4,000원
        9.
        2015.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Since it is impossible to predict earthquakes, they involve more casualties and property damage compared to meteorological disasters such as heavy snow and heat waves, which can be predicted through weather forecasts. This has highlighted the need for seismic design and reinforcement. Recently, the use of composite materials as reinforcement has surged because steel plate reinforcement and section enlargement are likely to result in increased weight and physical damage to structures. This study evaluates the seismic performance of panels created from composite materials, and their guide systems. The specimens were miniature versions of actual steel structures, and displacement loads were applied in the transverse direction. Seismic performance was found to improve when structures were reinforced with seismic panels.
        4,000원
        10.
        1995.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        구조물의 최적설계에 대한 일반적인 개념이 제시되며 Gradient Projection법과 설계민감도 해석을 사용한 최 적 화 알고리즘이 논의된다. 6충 평면 철 골 구조물 의 최소무게 설 계의 예 를 통해 이 알고리즘의 적용올 예시 한다. 시스댐 전 체의 비용분석뿐만 아니라 임계 비용 및 설계민 감도 해석파 같은 이 알고리즘의 장점에 관하 여 설명한다3
        4,000원
        11.
        2017.04 서비스 종료(열람 제한)
        A finite element analysis modeling is proposed to evaluate welding joint part of steel-frame. Based on the experimental results, A finite element analysis model was proposed to analyze the welding joint of steel-frame specimens. The numerical results predicted the experimental behavior of the welding joint of steel-frame specimens well. Therefore, it is possible to use the proposed finite element analysis model to evaluate middleand low-rise steel-frame buildings constructed in South Korea.
        12.
        2015.04 서비스 종료(열람 제한)
        This paper is developed the viscoelastic dumpers whose multilayer system absorbs weight transmitted to framed structure sliding down along specific layer elements. Experiments with and without viscoelastic dumpers were carried out. According to the results, I could confirm that interstory drift ratio of steel frame structure has effectively decreased on both 1st and 2nd floor compared to that of before.
        13.
        2008.09 KCI 등재 서비스 종료(열람 제한)
        본 연구에서는 2차 비탄성해석과 단면점증법을 이용한 평면 강골조 구조물의 최적설계 방법을 제시하였다. 2차 비탄성해석은 구조시스템과 그에 속한 부재들의 기하학적 비선형과 재료적 비선형을 고려하기 때문에 2차 비탄성해석에 바탕을 둔 설계법에서는 해석 후 개별부재의 강도검토가 필요 없다. 본 논문에서 제안한 단면점증법을 최적화 기법으로 사용하였으며 목적함수로 구조물의 중량을 사용하였다. 제약조건식은 구조시스템의 하중-저항능력, 처짐 및 층간 수평변위 등을 고려하였으며 제안된 방법에 의한 설계결과를 다른 방법에 의한 것들과 비교하여 그 효율성을 증명하였다.
        14.
        2006.07 KCI 등재 서비스 종료(열람 제한)
        본 연구는 지반조건을 고려한 브레이스된 강골조 구조물의 연속 및 이산화 내진 최적설계에 관한 내용이다. 지반조건을 고려한 구조해석과 연속 및 이산화 최적설계를 동시에 수행할 수 있는 내진 최적설계 프로그램을 개발하여 이를 브레이스가 없는 경우, Z-형, X-형의 브레이스 배치형태를 사용한 강골조 구조물에 적용하였고, 정하중, 지진하중을 고려하여 해석하였다. AISC-ASD 시방규정과 ATC-3-06에 규정한 사용성, 허용층간변위 및 다양한 제약조건을 모두 만족하는 최소중량, 설계변수 등을 도출하고, 특히 Newmark-Hall 설계스펙트럼 해석과 지반조건을 고려한 ATC 설계스펙트럼 해석 및 ATC 등가정적해석의 해석결과를 비교․분석함으로서 보다 내진에 적합한 브레이스 배치 형태 및 적용한 해석방법이 최적설계에 미치는 영향을 찾고자 하는데 그 목적이 있다.