검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 7

        1.
        2021.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The time series data of rotifer community focusing on the species number and total density were collected from 29 reservoirs located at Jeonnam Province from 2008 to 2016 quarterly. The reservoirs had similar weather condition during the study period, but their sizes and water qualities were different. To analyze the temporal dynamics of rotifer community, the medians, ranges, outliers and coefficient of variation (CV) value of rotifer species number and abundance were compared. For the temporal trend analysis, time series of each reservoir data were compared and clustered using the dynamic time warping function of the R package “dtwclust”. Small-sized reservoirs showed higher variability in rotifer abundance with more frequent outliers than large-sized reservoirs. On the other hand, apparent pattern was not observed for the rotifer species number. For the temporal pattern of rotifer density, COD, phytoplankton abundance fluctuation, and cladoceran abundance fluctuation have been suggested as potential factor affecting the rotifer abundance dynamics.
        4,000원
        2.
        2019.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        벼에 줄무늬잎마름병을 유발하는 애멸구(Laodelphax striatellus)의 온도에 따른 산란 등 성충 활동 특성을 12.5~35.0℃ 10개 항온조건 광주기 14L:10D에서 조사하였다. 산란모델을 만들기 위한 단위 함수를 개발하고 DYMEX를 이용하여 개체군 밀도 변동 모델을 구축하였다. 성충 수명은 15.0℃에서 56.0일로 가장 길었고, 35.0℃에서 17.7일로 가장 짧았으며 온도가 올라감에 따라 수명도 짧아지는 경향을 보였다. 암컷 한 마리당 총산란수는 22.5℃에서 515.9개로 가장 많았으며, 35℃에서 18.6개로 가장 적었다. 산란 모델 개발을 위해 성충발육율, 총산란수, 성충사망율 및 누적산란율 단위모델을 추정한 결과, 단위모델 모두에서 높은 수준의 모델 적합성을 보였다(r2=0.94~0.97). 개체군 밀도 변동 모델은 포트와 포장 실험을 통하여 예측 정확도를 평가하였다. 포트 및 포장 실험 결과 접종 후 30일까지는 각 조사 시점에서 밀도 및 영기 분포 비율의 예측 정확도가 비교적 높았으나 이후에는 1, 2령의 조사 밀도와 예측 밀도 간에 큰 차이가 발생하였고, 영기 분포 변화의 경우도 모델에서 실제 조사 자료보다 1~2단계의 발육 영기가 빠르게 추정되는 경향을 보였다.
        4,000원
        3.
        2016.04 구독 인증기관·개인회원 무료
        기후변화로 인한 온도 증가는 농업생태계에서 작물에 대한 해충-천적 시스템의 상호작용을 변화시켜 해충의 발생과 천적의 생물 방제 효과에 영향을 미친다. 고추의 대표적인 해충 복숭아혹진딧물과 목화진딧물, 천적인 칠성무당벌레를 대상으로 각각 기존의 Rosenzweig-Macathur predator-prey모델을 이용하여 244일 동안 평균 온도 상승에 대한 개체군의 밀도 변동을 모의하였다. 기후변화의 온도 영향을 알아보기 위해 모델을 구성하는 각각의 생물 파라미터에 대해 온도 의존 함수가 추가되었고, 수정된 모델의 결과를 바탕으로 dynamic index를 이용하여 상호작용 강도를 산출하였다. 시뮬레이션 결과, 두 시스템 모두 평균온도가 증가함에 따라(+1°C, +3°C) 해충과 천적의 밀도 변동 주기와 해충의 최대 발생 밀도는 감소하고, dynamic index는 증가하였다. 또한, 온도가 5°C 증가할 경우, 목화진딧물-칠성무당벌레 시스템에서는 강한 상호작용 에 의한 포식자 및 피식자의 과도한 밀도 감소의 영향으로 dynamic index가 급격히 상승하는 구간을 보여주었다. 기후변화에 의해 평균 온도가 증가함에 따라 해충의 발생 빈도 증가 및 일부 발생 밀도의 증가가 나타날 수 있지만, 종간 상호작용 증가에 의해 그 영향이 상쇄됨에 따라 생물적 방제 효과는 증대될 것으로 예측된다.
        4.
        2013.04 구독 인증기관·개인회원 무료
        톱다리개미허리노린재 [Riptortus pedestris (Thunberg)]의 경우 콩으로 침입해 들어오는 시기가 콩의 개화시기와 관련하여 특정 시기에 한정되어 있다. 만약 콩이 개화하는 시기에 주변 톱다리개미허리노린재 개체군의 밀도 및 성충의 상대적 비율 등을 추정할 수 있다면 약제 방제 시기의 결정이나, 파종 시기의 변경과 같은 경종적 방법을 이용한 피해 경감 전략 수립에 큰 도움이 될 것이다. 따라서 본 발표는 톱다리개미허리노린재의 발육, 산란 등을 설명하는 수학적 함수를 상용 소프트웨어를 사용하여 밀도변동 예측 모델을 구축한 후 이를 이용한 시뮬레이션 결과 및 의미를 평가하고자 한다. 톱다리개미허리노린재 밀도 변동 예측 모델은 상용소프트웨어인 DYMEX ® (Maywald et. al., 2007)를 이용하여 구축하였다. 모델은 10개의 모듈로 구성되었으며, Lifecycle 모듈은 알, 1, 2, 3, 4, 5령, 성충의 7개 발육 단계로 구성하였다. 각 충태별 온도에 따른 발육율, 발육완료 함수 및 성충의 사망률함수, 누적산란율 함수는 Kim et al. (2009)이 발표한 논문의 자료를 사용하였다. 성충 발육율 함수는 동 논문의 자료를 이용하여 별도로 추정하였고, 성충의 성비는 0.5로 가정하였다. 모델의 평가를 위해 2010∼2012년 3년간 경기도 화성시 팔탄면, 충청남도 예산군 신암면에서 집합페로몬 트랩을 이용하여 3월부터 11월까지 매주 조사된 톱다리개미허리노린재 성충 포획 성적과, 경기도농업기술원과 충청남도농업기술원에서 운영하고 있는 화성시 팔탄면, 예산군 신암면에 설치된 자동기상관측장비(AWS)의 기상 자료를 사용하였다. 시뮬레이션 결과 톱다리개미 허리노린재는 연간 3∼4세대 발생 가능하였으며, 예측된 세대간 연도간 발생시기 및 밀도는 조사치와 차이가 있었으나 밀도 변동 경향은 비슷하였다.
        5.
        2012.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        중요 시설해충인 아메리카잎굴파리(Liriomyza trifolii (Burgess))의 개체군 밀도변동모형을 방울토마토 온실내 대기온도와 잎 표면온도를 이용하여 모형 정확성을 비교하였다. 모형 개발에 이용된 생물적 변수들은 기존 발표된 자료들을 사용하였고 모형 작성은 DYMEX 프로그램을 이용하였다. 온도에 따라 상이한 발육기간과 산란수는 생리적 연령으로 표준화시킨 발육완료 분포모형, 연령 특이적 산란수 및 생존율을 비선형회귀 모형에 적합시켜 밀도변동 모형을 개발하였다. 줄내림방식의 방울토마토에서 식물체를 3개의 위치(상단: 지상 1.6 m 이상, 중단: 지상 0.9 - 1.2 m 사이, 하단: 지상 0.3 - 0.5 m 사이)로 나누고 각 위치별로 온실 내 대기 온도와 잎 표면 온도를 기록하였다. 온실 내 잎 표면 최대온도는 대기중 최대온도보다 항상 낮게 유지되고 있었으며, 하단, 상단, 중단의 순으로 온도가 낮아지는 경향을 보였다. 개발된 모형검정을 위한 초기이입 시기와 밀도는 6월초 성충 5마리가 총 50개의 알을 잎에 산란한 것으로 설정하였다. 온실 내 대기 온도와 잎 표면 온도를 이용하여 아메리카잎굴파리 유충 발육모형과 성충의 산란모형을 DYMEX로 프로그래밍하고 모의실험을 하였다. 모의실험결과를 평가하기 위해 기상자료를 수집한 동일한 온실에서 아메리카잎굴파리 유충 밀도를 육안조사 하였으나, 알, 번데기, 성충의 경우 육안조사가 어려워 대상에서 제외하였다. 육안조사결과 밀도변동패턴이 방울토마토 잎 표면 온도를 이용한 모의실험결과 밀도변동패턴과 유사하였다. 육안조사결과와 육안조사시기의 DYMEX모의실험 결과값을 상관분석 한 결과, 육안조사결과와 잎 표면 온도를 이용한 모의실험 결과가 유의한 양의 상관관계를 보였다(r = 0.97, p < 0.01). 대기 온도를 이용한 모의실험 결과와는 유의하지 않은 상관관계를 보였다(r = 0.40, p = 0.18). 본 연구결과 방울토마토 온실에서 아메리카잎굴파리 개체군 밀도변동의 적절한 예측을 위해서는 잎 표면 온도를 고려해야 하는 것으로 나타났다.
        4,000원
        6.
        2012.05 구독 인증기관·개인회원 무료
        혹명나방(Cnaphalocrocis medinalis (Guenee))은 인도 서부지역부터, 일본 북부지방까지 분포 가능한 해충으로 우리나라에서는 월동하지 못하고 매년 비래하여 벼에 피해를 주는 해충이다. 혹명나방 개체군 밀도의 효과적인 억제를 위해 적절한 방제시기를 예측하고 방제 수단을 동원하기 위해 발생량 및 발생 최성기를 추정 할 수 있는 수단이 필요하다. 따라서 본 연구는 온도 의존적 수리적 모델과 상용 프로그램을 이용하여 보다 정확한 혹명나방 개체군의 발육 및 밀도 변동을 예측하기 위하여 수행되었다. 예측 모델은 상용프로그램인 DYMEX® (Maywald et. al., 2007)를 이용하여 구축하였으며, 구축된 모델은 Lifecyle 모듈을 포함한 8개의 모듈로 구성하였다. Lifecycle 모듈은 알, 어린유충, 노숙유충, 번데기, 성충의 5개 발육 단계로 구성하였으며, 각 영기의 발육율 계산에 사용된 비선형 모델은 변형된 Sharpe & DeMichele 함수를 사용하였다. 발육완료 함수는 2-parameter weibull 함수를 사용하였으며, 성충 산란모델은 총산란수함수, 사망률함수, 누적산란율 함수로 구성하였다. 성충의 성비는 0.5로 가정하였으며, 구축된 모델은 2005년 국립농업과학원 시험연구사업보고서 (박 등, 2005)에 수록된 자료를 이용하여 평가하였다. 평가 결과 초기밀도를 2005년 8월 4일 성충 46.0마리로 설정 후 프로그램을 구동한 결과 다음세대 성충 밀도 최성기는 9월 14일로 예측되어 육안조사 결과와 일치하였으나 성충 밀도는 1099.1마리로 추정되어 육안으로 조사된 364.9마리보다 약 3배 가까이 많았다. 실제 포장 밀도가 모델에 의해 추정된 밀도보다 크게 낮은 이유 중 하나는 본 모델에서는 실내 실험 결과 발생한 자연 사망률만 반영한데 반해 포장에서는 천적 등 다양한 사망요인이 관여하였던 결과로 추정되었다.
        7.
        2012.05 구독 인증기관·개인회원 무료
        애멸구(Laodelphax striatellus Fallen)는 국내에서 월동 가능한 해충으로 벼의 줄무늬잎마름병 (RSV)을 매개하여 피해를 발생시킨다. 최근에는 5월하-6월 상순경에 중국으로부터 대량으로 비래하여 서해안 지역의 벼 줄무늬잎마름병 발병에 관여하고 있는 것으로 추정하고 있다. 본 연구는 수리적 모형과 상용 프로그램을 이용하여 보다 정확한 애멸구 개체군의 발육 및 밀도 변동을 예측하기 위하여 수행되었다. 예측 모델은 상용프로그램인 DYMEX® (Maywald et. al., 2007)를 이용하여 구축하였으며, Lifecyle 모듈을 포함한 8개의 모듈로 구성하였다. Lifecycle 모듈은 알, 1, 2, 3, 4, 5령, 성충의 7개 발육 단계로 구성되었으며, 각 영기의 발육율 계산에 사용된 비선형 모형은 변형된 Sharpe & DeMichele 함수를 사용하였다. 발육완료 함수는 Logistic 함수 (Neter & Wasserman, 1974)를 사용하였으며, 성충 산란모델은 총산란수함수, 사망률함수, 누적산란율 함수로 구성하였고, 성충의 성비는 0.5로 가정하였다. 모델의 평가를 위해 2011년 7월 6일 벼 포트에 성충 3쌍을 접종하여 증식시키며 4회 전수 밀도 조사한 결과 7월 21일, 8월 5일, 8월 12일 조사에서는 육안조사 밀도가 모델을 이용한 예측 밀도보다 16∼112마리 많았으나 8월 19일에는 20마리 가량 적었다. 조사 시기별 개체군내 발육태별 상대적 비율 변화를 분석한 결과, 모델을 사용하여 영기 진전을 예측하였을 경우 실측 조사 영기보다 1∼2령 정도 느리게 발육하는 것으로 추정되었다. 본 연구 결과 예측치와 실측치간의 절대 밀도와 영기 비율의 부분적인 불일치는 사망률 정보의 추가와 적절한 온도 자료의 제공을 통해 정확도를 높일 수 있을 것으로 판단되었다.