검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 5

        1.
        2025.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        As global greenhouse gas reduction regulations are strengthened and the demand for eco-friendly energy increases, renewable energies, including offshore wind power, are growing rapidly. Unlike onshore wind power generation, offshore wind power is located in the ocean. As a result, the offshore wind power substructure is exposed to low temperatures, corrosion, and continuous fatigue loads. Therefore, selecting appropriate materials and welding techniques is crucial for durability. In this study, FCAW welding was performed on S355ML steel (EN10025) for offshore wind power applications. After the welding process, the mechanical properties of the welded joint were evaluated through tensile, low-temperature impact, and hardness tests to assess the welding condition. The study revealed that the tensile and yield strength of the welded joint were superior to those of the base material. Additionally, the impact strength at low temperatures was confirmed to exceed the standard.
        4,000원
        2.
        2024.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Friction stir spot welding (FSSW) is a solid-state joining process and a rapidly growing dissimilar material welding technology for joining metallic alloys in the automotive industry. Welding tool shape and process conditions must be appropriately controlled to obtain high bonding characteristics. In this study, FSSW is performed on dissimilar materials AA5052-H32 aluminum alloy sheet and SPRC440 steel sheet, and the influence of the shape of joining tool and tool insertion depth during joining is investigated. A new intermetallic compound is produced at the aluminum and steel sheets joint. When the insertion depth of the tool is insufficient, the intermetallic compound between the two sheets did not form uniformly. As the insertion depth increased, the intermetallic compound layer become uniform and continuous. The joint specimen shows higher values of tensile shear load as the diameter and insertion depth of the tool increase. This shows that the uniform formation of the intermetallic compound strengthens the bonding force between the joining specimens and increases the tensile shear load.
        4,000원
        3.
        2017.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The fracture of mechanical structure is caused by internal cracks in the material. Particularly, the fracture can also be seen to happen under the stress that is lower than yield strength in case of high strength steel because of the crack happening from the defect inside the material. In this study, high strength steel with four holes near the center crack were designed by angle and fatigue experiments, and the simulation analyses to verify the experimental results were carried out. As the results of this study, the crack growth rates are shown to be 0.000485, 0.000434 and 0.000422 respectively at the inclined angles of center crack as 22.5°, 45° and 67.5°. The maximum deformation energies become 0.0848mJ, 0.0603mJ and 0.0582mJ respectively at the inclined angles of center crack as 22.5°, 45° and 67.5°. It is thought that this study result can be utilized as the basic data at the study on the material existing with the defects of crack and hole.
        4,000원