Engineered nanomaterials (ENMs) can be released to humans and the environment through the generation of waste containing engineered nanomaterials (WCNMs) and the use and disposal of nano-products. Nanoparticles can also be introduced intentionally or unintentionally into waste streams. This study examined WCNMs in domestic industries, and target nanomaterials, such as silicon dioxide, titanium oxide, zinc oxide, nano silver, and carbon nanotubes (CNTs), were selected. We tested 48 samples, such as dust, sludge, ash, and by-products from manufacturing facilities and waste treatment facilities. We analyzed leaching and content concentrations for heavy metals and hazardous constituents of the waste. Chemical compositions were also measured by XRD and XRF, and the unique properties of nano-waste were identified by using a particle size distribution analyzer and TEM. The dust and sludge generated from manufacturing facilities and the use of nanomaterials showed higher concentrations of metals such as lead, arsenic, chromium, barium, and zinc. Oiled cloths from facilities using nano silver revealed high concentrations of copper, and the leaching concentrations of copper and lead in fly ash were higher than those in bottom ash. In XRF measurements at the facilities, we detected compounds such as silicon dioxide, sulfur trioxide, calcium oxide, titanium dioxide, and zinc oxide. We found several chemicals such as calcium oxide and silicon dioxide in the bottom ash of waste incinerators.
In this study, we investigated the distribution of domestic nanomaterials. Zinc oxide (ZnO), titanium dioxide (TiO2), and silver (Ag) nanoparticles, as well as carbon (C) nanotubes, were selected, and their circulation and quantity in use was investigated. We also analyzed leaching and of heavy metals in nanowaste. Chemical composition was determined using Xray diffraction and fluorescence (XRD and XRF) and transmission electron microscopy (TEM). Using XRF and XRD analysis, sludge from a facility using zinc oxide was found to have silicon dioxide (SiO2) and TiO2 as its main components. Sludge from a facility using TiO2 was found to have TiO2 as its main component. Samples of Ag nanoparticle and C nanotubes manufacturer measured elemental components of Ag and C, respectively. TEM analysis showed Si O2 in the form of dust sample from a facility manufacturing ZnO. Carbon nanotube samples of manufacturers were in the form of fibers. Leaching test results showed low concentrations compared to the regulation criteria of the Wastes Control Act. Content result of Zn was detected at -111.7 ~ 24,843.4 mg/kg in ZnO samples. Content result of Ti was detected at 1.51 ~ 35.28 mg/kg in TiO2 samples. Oil mop samples of Ag nanoparticle were detected in Ag (29,643.07 mg/kg) and Cu (15,600.8 mg/kg).
나노기술이 급격히 발전함에 따라 다양한 산업, 의학, 환경 분야에서 나노물질의 사용 또한 급증하고 있다. 나노물질이란 1~100nm 크기의 미세입자로서 가정에서 흔히 사용하는 세정제나 항균코팅제, 페인트, 화장품, 전기전자제품, 토너 뿐만 아니라 의료기기, 배터리 등 다양한 분야에서 적용되고 있다. 이러한 상당량의 나노물질들은 제조사업장이나 실험실에서 폐기되거나 일반소비자들이 나노제품을 사용한 후 결국 나노물질을 함유한 폐기물, 즉 나노폐기물의 형태로 배출되고 있다. 이들 나노물질이나 제품이 인체건강에 미치는 안전성에 대한 문제 또한 지속적으로 제기되고 있으나, 현재 별도의 관리 없이 기존 일반폐기물들과 함께 처리되고 있는 실정이다. 이에 본 연구에서는 나노폐기물의 주요 배출원 및 노출경로를 조사하고, 특히 주요 폐기물 처리시설 중 소각시설에서의 처리실태를 바탕으로 향후 나노폐기물 안전처리를 위한 연구 추진과제 및 관리전략을 마련하였다. 특히, 국내 유통량 및 선행연구 적용사례, 해당 물질의 유해 특성에 기반하여 4가지 나노물질(n-TiO2,n-ZnO, n-Ag, CNT)을 선정하였으며, 이들 나노물질을 대상으로 소각시설로의 유입 및 배출 시나리오(I, II, III)를 통해 물질흐름을 예측하였다. 이 중 국내 폐기물 처리비율을 반영한 시나리오 III에 따르면, n-TiO2의 경우 연간 약 48톤이, n-ZnO는 178톤이 소각시설로 유입된 후 대부분 매립되며(65%), n-Ag는 상대적으로 소량 생산되어 7톤 정도 소각시설로 유입될 것으로 추정되었다. 또한 앞서의 흐름 파악 및 실태조사를 바탕으로 향후 나노폐기물 안전처리를 위한 추진과제 및 관리전략을 마련하였다. 본 연구에 이어 향후 폐기물 부문, 화학물질 부문과 수처리 부문(슬러지류의 경우) 간 통합적 협력 및 정책 개발을 통해 나노폐기물을 보다 안전하게 관리할 수 있는 시스템이 마련되어야 할 것이다.
Nanomaterials affect human and environmental health through applications, such as waste-containing nanomaterials (WCNMs) generation, product use, treatment and disposal. As the number of applications increases, more and more nanomaterial waste will be generated. The increased use of nanomaterials introduces nanoparticles intentionally or unintentionally into waste streams. This study examined WCNMs in a domestic industrial area and selected silicon dioxide as an objective nanomaterial because it is ranked first in circulation and quantity of use. We analyzed leaching and concentration of heavy metals in nano-waste. Chemical composition was determined using X-ray powder diffraction (XRD) and X-ray fluorescence (XRF), and the unique properties of nano-waste were examined using particle size distribution analyzer and transmission electron microscopy (TEM). The results of the leaching test showed lower or undetectable concentrations than those of standard hazardous substances in Korea. However, some samples had higher concentrations than criteria of hazardous chemicals in contaminated soil. The XRF results revealed that silicon dioxide was the major component with a known particle size < 100 nm in liquid waste samples.
최근 나노기술의 발달로 산업, 의료, 환경 등 다양한 분야에서 나노물질 사용량이 급증하고 있으며 이에 따른 소비재의 폐기, 재활용 시설, 하・폐수처리시설, 소각시설에서 나노물질 함유 폐기물이 새롭게 발생되고 있다. 특히 나노물질은 내부 또는 외부차원의 크기가 1-100 nm로 동일 성분을 가진 큰 입자와 다른 물리화학적 특성을 가지고 있다. 이러한 특성은 나노크기의 은 입자로 만든 항균섬유, 탄소나노튜브를 사용한 고성능 배터리, 도료, 나노 이산화티타늄을 첨가한 코팅제, 산화아연을 첨가한 자외선 차단제 등 다양한 제품이 제조되어 사용되지만 제품에 대한 자세한 물질정보는 거의 알려져 있지 않다. 2015년 기준 나노물질을 첨가하여 만든 제품수는 1,814개로 주로 건강과 피트니스 제품이 가장 많았고, 개인용품, 의류, 화장품이 순차적으로 조사되었다. 특히 자동차, 전자제품, 연료첨가제, 플라스틱 등에서도 사용되고 있다. 우리나라에서 사용되는 나노물질의 종류는 15종으로 이 중 사용량이 가장 많은 것은 OECD 안전성시험 제외물질인 카본블랙, 탄산칼슘, 그리고 15년도에 조사한 이산화규소이었다. 그리고 나노물질 함유 폐기물에 대한 국제적인 시험방법이 아직 마련되어 있지 않아서 선행 연구자료를 토대로 분석프로토콜을 작성하였다. 따라서 본 연구에서는 사용량과 나노물질의 물리화학적 특성과 배출형태 등을 고려하여 조사대상나노물질로 산화아연, 이산화티타늄, 탄소나노튜브, 은나노를 선정하였다. 조사대상 시료는 나노물질의 사용 후 폐기물, 하・폐수처리시설 슬러지, 소각시설 비산재, 바닥재, 분진 그리고 매립지 침출수와 슬러지 등 30건을 채취하였다. 채취한 시료의 용출농도는 폐기물공정시험방법, 함량농도는 토양오염공정시험방법 등을 이용하여 납, 카드뮴, 아연, 티타늄 등 16종을 조사하였다. 또한 나노물질의 물리적인 특성을 파악하기 위해 입도분석, TEM(투과 전자현미경), XRD와 XRF을 이용하여 시료를 측정하였다. 연구 결과 함량농도에서 크롬, 구리, 납, 바륨, 아연 등이 다른 항목에 비해 높게 검출되었다. 용출농도에서는 사용된 제조나노물질의 특성, 폐기물의 종류 및 성상 등에 따라 다양하게 나타났다.
나노기술은 현재 세계적으로 재료, 에너지, 화학, 바이오 등 각종분야에 적용되는 첨단 과학기술로 발전하고 있고 폭넓은 활용성과 경제적, 사회적 변화와 발전에 대한 기대감으로 연구개발이 활발히 진행되고 있다. 나노기술의 발전과 다양한 활용을 통해 나노제품이 증가함에 따라 나노물질의 생활환경 및 자연계, 인체로의 노출이 빈번해졌다. 최근 나노물질과 나노제품에 대한 보건 및 환경에 대한 위해성 문제가 꾸준히 제기되거나 소각, 폐수처리 시 나노물질이 완전히 제거되지않고 환경으로 배출되는 등 예상치 못한 부정적 영향이 제기됨에 따라 나노물질 및 나노물질이 함유된 폐기물에 대한 안전관리 방안 마련이 필요하게 되었다. 또한 최근에는 나노물질 자체의 위해성 문제와 함께 나노물질의 생산, 사용, 유통 과정과 나노제품을 사용하는 과정에서 발생되는 나노물질 함유 폐기물에 대한 관심이 증가하였다. 따라서 본 연구는 국내 나노물질 함유 폐기물의 발생 및 배출특성을 파악하고 조사된 국내 나노물질 유통량 현황자료를 바탕으로 조사대상 나노물질 중 SiO2 선정하였다. 국내 산업 업종별 SiO2 함유 가능성이 있는 폐기물을 발생하는 업체를 선정하고 총 12개의 시료를 채취하였다. 채취된 시료는 폐기물 공정시험기준, 토양오염 공정시험기준에 따라 유해물질의 용출 및 함량 분석을 하였고 XRD, XRF를 아용한 화학물질의 함량을 분석하였다. 또한 입도분석 및 전자현미경(TEM) 분석을 통해 나노물질 함유 폐기물이 일반폐기물과 다른 특성을 조사하였다.