셀프-프리스트레싱을 적용할 수 있는 철계-형상기억합금을 콘크리트 기둥에 적용하기 위한 연구가 일부 연구자들에 의해 수행되었으며, 이러한 철계-형상기억합금의 사용으로 셀프-프리스트레싱을 통 한 구속 효과가 입증되었다. 그러나 셀프-프리스트레싱을 통한 구속 효과를 정량적으로 규명하기 위 한 연구는 비교적 부족한 실정이다. 따라서 본 연구에서는 철계-형상기억합금으로 프리스트레싱된 콘 크리트의 일축압축 거동을 규명하기 위한 해석적 연구를 수행하였다. 철계-형상기억합금 나선철근으로 구속된 콘크리트의 일축압축 거동을 예측하기 위해 파괴에너지에 기반한 응력-변형률 모델이 제안되 었다. 파괴에너지는 콘크리트 내부 변형률 게이지가 부착된 아크릴 바를 통해 측정되었다. 실험 변수 로 철계-형상기억합금 나선철근의 간격, 활성화 온도, 콘크리트 압축강도가 고려되었다. 파괴에너지는 나선철근의 간격이 감소됨에 따라 증가하였으며, 활성화 온도가 증가됨에 따라 감소되는 것으로 확이 되었다. 또한, 파괴에너지에 기반한 응력-변형률 모델은 철계-형상기억합금 나선철근으로 구속된 콘크 리트의 일축압축 거동을 비교적 유사하게 예측할 수 있는 것으로 나타났다.
강섬유 보강 콘크리트(Steel Fiber Reinforced Concrete, SFRC)는 콘크리트의 취성적인 거동을 연성 거동으로 보완해주는 재료로서 사용되고 있다. SFRC는 과거 비 구조체에서 섬유 보강 콘크리트는 균 열을 제어하기 위한 목적으로만 사용되었지만 현재 구조적인 재료로서의 연구가 진행되고 있다. 콘크 리트의 압축강도는 강도계산에 사용되지만 재료의 인성(Toughness)을 평가하기 위해서는 응력-변형률 곡선이 필요하다. 본 연구에서는 섬유의 혼입량을 체적비 0.5%로 두어 나선철근의 유무 및 철근의 피 치를 변수로 두어 압축실험을 통해 인성비(Toughness Ratio)를 측정하였으며, 선행연구에 제안된 예측 식을 통해 실험 값과 해석 값을 비교하였다. 사용한 강섬유는 직경 0.75mm, 길이 60mm 및 인장강도 1,100MPa인 후크형 모양의 섬유를 사용하였으며, SFRC의 압축 실험은 200tonf 용량의 UTM을 사용 하여 응력-변형률 곡선을 확인하기 위해 0.5mm/min의 속도로 변위제어 하였다. Plain 시편의 압축강 도는 19.6MPa로 나타났으며, 52mm간격의 나선철근을 넣은 경우 33.3MPa, 섬유 0.5% 혼입한 경우 29MPa로 각각 70.1% 및 48.0% 높은 압축강도가 나타났다. 52mm 간격의 나선철근을 넣은 시편의 인성비는 0.34로 측정되었으며, 0.5%의 섬유가 혼입된 52mm 및 36mm간격으로 보강된 시편의 경우 각 0.32 및 0.49로 -6.5% 및 44.3%의 증감이 나타났다. 따라서 섬유의 보강으로 인한 SFRC의 인성 거동을 확인하였다. 예측식의 경우 52mm 나선철근으로 보강한 시편의 경우 압축강도 -0.06 및 변형 률 -7.37%의 오차율이 나타났으며, 36mm의 경우 각 11.51% 및 -36.5%의 오차율이 나타났다. 따라 서 예측식을 통해 나선철근으로 보강된 SFRC 강도예측을 확인하였다.
This study reports an experimental and analytical exploration of concrete columns laterally confined with Fe-based shape-memory alloy (Fe-SMA) spirals. For performing experiments, Fe-SMA rebars with a 4% prestrain and diameter of 10 mm were fabricated and concrete columns with internal Fe-SMA spiral reinforcement were constructed with a diameter of 200 mm and height of 600 mm. An acrylic bar with an attached strain gauge was embedded in the center of the specimen to measure local strains. Experimental variables encompassed the Fe-SMA spiral reinforcement, spacing, and activation temperature. Uniaxial compression tests were conducted after applying active confinement to the concrete columns through electrical-resistance heating. Notably, as the Fe-SMA spiral spacing decreased, the local failure zone length and compressive fracture energy of the prepared specimens increased. Additionally, a model incorporating compressive fracture energy was proposed to predict the stress–strain behavior of the. This model, accounting for active and passive confinement effects, demonstrated accurate predictions for the experimental results of this study as well as for previously reported results.
본 논문은 철계형상기억합금(Fe-SMA) 나선철근을 이용한 기둥의 횡구속 효과를 평가한 실험적 연구를 보고한다. 실험을 위해 사전변형 4%의 5mm × 5mm의 Fe-SMA 나선철근으로 구속된 150mm × 150mm ×300mm의 원형 실험체가 제작되었다. 실험변수는 Fe-SMA 나선철근의 피치(0mm, 80mm, 60mm, 40mm), Fe-SMA 나선철근의 활성화 유무(활성화, 비활성화)를 고려하였다. Fe-SMA 나선철근 활성화를 위해 소성로를 사용하여 목표온도 140℃까지 가열하였다. 실험체의 온도가 상온에 도달한 후 만능재료시험기를 이용하여 1축 압축실험을 실시하였다. 실험결과를 통해 Fe-SMA 나선철근을 활성화하여 능동적 횡구속압이 작용된 실험체의 최대응력과 최대응력 발현 시의 변형률은 활성화하지 않은 실험체에 비해 크게 증가하는 것으로 나타났다. 또한, 나선철근 피치의 감소로 인해 능동적 구속압이 증가함에 따라 최대응력과 연성지수가 크게 증가하는 것으로 나타났다. 특히 보강 간격이 40mm인 활성화된 나선철근으로 구속된 실험체는 최대하중 도달 후 하중이 유지 및 증가하는 변형경화가 발생하는 것으로 나타났다.
In this study, load transfer tests based on KCI-PS101 were conducted to verify the performance of spiral anchorage zone reinforcement for banded post-tensioning (PT) monostrands. With results, the compressive strength of spiral reinforcement was increased by about 20% than that of specimens with two horizontal steel bars and 8% than that of U-shaped bars. Advanced spiral reinforcement for corner increases compressive strength and can resist the spalling forces or fall-out effect at the corner by shear. The ratio of maximum load to amount of steel of the spiral reinforcement is about twice than that of U-shaped reinforcement. With increase of compressive strength capacity and improvement of constructability, the spiral reinforcement is considered to have advantages of promoting the performance of PT anchorage zone compared to conventional methods.
In order to investigate the confinement behavior of reinforced concrete columns using high strength materials, we performed loading tests on the columns with different combinations of reinforcement strength. Base on the test results together with previous studies, the confinement capacity of high strength reinforced concrete column was evaluated and the adequacy of the confinement design equation in the KCI code was discussed. As a result, it is found that the energy dissipation capacity increases as the yield strength increases.
Spiral reinforcement in a circular column plays an effective role in the ductile behavior of a column through position fixing and buckling restraining of the longitudinal reinforcement, and confining core-concrete. Each country has suggested the minimum volumetric ratio of spiral reinforcement in order to secure the ductility of concrete columns. The minimum volumetric ratio of spiral reinforcement suggested by ACI 318-14 and the national concrete structure design standard was developed based on the theory of Richard et al. (1928); furthermore it has been used until now. However, their theory cannot consider the effects of high strength concrete and high strength reinforcement, and arrangement condition of the spiral reinforcement. In this study, a modified minimum volumetric ratio equation is suggested, which is required to improve the ductility of reinforced concrete circular columns and to recover their stress. The modified minimum volumetric ratio equation suggested here considers the effect of the compressive strength of concrete, the yield strength of spiral reinforcement, the cross sectional area of columns, the pitch of spiral reinforcements and the diameter of spiral reinforcement. In this paper, the validity of the minimum volumetric ratios from ACI 318-14 and this study was investigated and compared based on the results of uniaxial compression experiment for specimens in which the material strength and the spiral reinforcements ratio were used as variables. In the end of the study, the modification method for the suggested equation was examined.
형상비(M/VD, shear span-depth ratio)가 4.5인 축소모형의 원형기둥 실험체 3개를 제작하였다. 철근콘크리트 기둥 실험체의 단면 은 원형이고 중공단면으로 제작되었다. 철근콘크리트 기둥 실험체의 단면 지름은 400 mm, 중공 지름은 200 mm이다. 일정한 축력 하에서 반복 하중을 가력하는 준정적 실험을 수행하였다. 실험체의 주요변수는 횡방향철근비이다. 모든 실험체의 횡방향 나선철근 체적비는 소성힌지 구 간에서 0.302~0.604%의 값을 갖는다. 이 값은 도로교설계기준에서 요구하는 최소 심부구속철근 요구량의 45.9~91.8%에 해당하며, 이는 내진 설계가 되지 않은 기존 교각이나 내진설계개념으로 설계되는 교각을 나타낸다. 본 연구의 최종목적은 실험적 기초자료의 제공과 함께 성능단 계별 균열, 철근의 항복, 파단 등 정량적 수치와 경향을 제공하기 위한 것이다. 본 논문에서는 실험결과를 통해 분석된 실험변수에 따른 교각의 파괴거동, 강도저감거동, 변위연성도에 대해 중점적으로 기술하였다.
Integral abutment bridges (IABs) have been used only as short to medium long bridges because thermal displacements of IABs limit the bridge length. One of recent studies regarding IABs showed the use of a spiral rebar can effectively control the crack propagations of the pilecap (Frosch, 2009). Accordingly, in this study, parametric study of spiral rebar on pile-to-pilecap connection were performed.
형상비 4.5인 축소모형 원형기둥 실험체 8개를 제작하여 일정한 축력 하에서 반복횡하중을 가력하는 실험을 수행하였다. 실험체의 주요변수는 횡방향철근비, 축방향철근비 (2.017%, 3.161%), 축력비 (0, 0.07, 0.15)이다. 모든 실험체의 횡방향 나선철근 체적비는 소성힌지 구간에서 0.3352~0.8938%의 값을 갖는다. 이 값은 도로교설계기준에서 요구하는 최소 심부구속철근 요구량의 39.7~122.3%에 해당하며, 이는 내진설계가 되지 않은 기존 교각이나 내진설계개념으로 설계되는 교각을 나타낸다. 본 연구의 최종목적은 실험적 기초자료의 제공과 함께 성능단계별 균열, 철근의 항복, 파단 등 정량적 수치와 경향을 제공하기 위한 것이다. 본 논문에서는 실험결과를 통해 분석된 실험변수에 따른 교각의 파괴거동, 강도저감거동, 변위연성도에 대해 중점적으로 기술하였다.
본 연구에서는 비내진 교각의 내진성능과 휨-전단 거동을 파악하고자 형상비 4.5인 정사각형의 중실 및 중공단면 철근콘크리트 교각실험체를 제작하여 일정한 축력하에서 변위비 등급을 증가시켜 가면서 횡하중을 가력하는 실험을 수행하였다. 본 연구는 철근콘크리트 교각의 한정연성 내진설계를 위한 실험적 기초자료의 제공과 함께 성능단계별 교각성능 및 손상평가를 위한 정량적 수치와 경향을 제공하기 위한 것이며, 파괴거동, 극한변위, 극한드리프트비율, 변위연성도, 응답수정계수, 등가점성감쇠비, 잔류변형지수, 유효강성, 철근 변형률 등의 주요 내진성능 인자들에 대한 분석결과와 비선형 해석 결과를 나타내었다.
이 연구에서는 콘크리트 압축강도에 따른 고강도 나선철근의 횡구속 성능을 평가하고자 하였다. 총 24체의 실린더형 콘크리트 실험체(150×300mm)를 제작하고 단조 압축하중 실험을 수행하였다. 주요 실험변수는 나선철근의 항복강도와 콘크리트 압축강도로 계획하였다. 나선철근의 항복강도에 따른 횡구속 효과를 효과적으로 평가하기 위하여 나선철근의 외경을 실험체 직경과 동일하게 계획하였다. 실험결과, 나선철근의 횡구속 성능은 나선철근의 항복강도가 증가할수록 그리고 콘크리트 압축강도가 낮아질수록 증가하였다. 또한 기존 해석모델을 이용하여 실험체의 응력-축변형률 관계를 예측한 결과, 해석결과는 나선철근의 항복강도와 콘크리트 압축강도가 증가할수록 정확성이 떨어지는 것으로 확인되었다.
이 연구에서는 나선철근으로 횡구속된 순환골재 콘크리트의 구조적 거동을 평가하였다. 주요 실험변수는 골재의 종류와 나선철근의 철근비로 계획하였다. 총 18체의 실험체를 제작하였으며, 실험체의 직경과 높이는 각각 150mm와 300mm이었다. 실험체는 사용된 굵은 골재의 종류에 따라 2가지로 구분할 수 있으며, 나선철근의 철근비는 0%에서 1.75%까지 변화하도록 계획하였다. 실험체의 축방향 및 횡방향 변형을 측정하기 위하여, 6개의 LVDT를 실험체에 부착하였다. 또한 나선철근의 변형률을 측정하기 위하여 스트레인 게이지를 120도 간격으로 나선철근에 부착하였다. 실험결과로부터, 나선철근으로 횡구속된 순환 골재콘크리트의 구조 성능은 나선철근의 철근비와 관계없이 천연골재 콘크리트와 서로 유사함을 확인하였다.