연속식 전기탈이온(continuous electrodeionization, CEDI)은 고순도수(high purity water, HPW)를 제조하기 위한 핵심적인 수처리 기술이다. 본 연구에서는 CEDI 성능 향상을 위해 이온교환수지 층의 구성과 이온교환막의 특성이 미치는 영향을 고찰하였다. 먼저, 다양한 이온교환수지 층 구성(mixed-bed, layered-bed, separated-bed)을 비교한 결과, mixed-bed 구 조가 가장 높은 염 제거율과 낮은 에너지 소비를 나타내었다. 이어서 이온교환수지 조성의 영향을 평가하기 위해 chromatography 수지와 gel 수지의 부피비율(C:G) 및 음이온/양이온 수지 비율(A:C)을 조절한 실험을 수행하였다. 그 결과, C:G = 25:75 및 A:C = 5:5 조건에서 가장 우수한 탈염 성능을 나타냈으며, 이는 적절한 공극 구조와 이온교환기 함량 간 균형을 통 해 물 분해 반응 및 이온 전달이 최적화된 결과로 해석된다. 또한, 두 종류의 상용 불균질 이온교환막(Lanxess 막과 금화정수 막)을 비교한 결과, 금화정수 막이 Lanxess 막보다 더 높은 이온전도도, 이온교환용량, 투과선택성을 나타내었고, 이에 따라 더 높은 탈염 효율과 낮은 에너지 소비를 나타내었다. 본 연구의 결과는 고효율 CEDI 시스템 설계를 위한 이온교환수지 층 조성 및 멤브레인 특성의 최적화 방향을 보여준다.
만성 상처, 특히 다제내성 세균 감염으로 복잡한 상처는 임상적 상처 관리에서 지속적인 도전 과제이다. 자연 유 래 생체 고분자인 키토산은 고유한 항균 활성, 생체 적합성 및 필름 형성 특성으로 주목받고 있다. 그러나 단독 사용은 기계 적 강도가 낮고 약물 보유가 짧기 때문에 제한적이다. 이 총설에서는 은 나노입자(AgNPs), 폴리카프로락톤(polycaprolactone, PCL), 셀룰로오스 나노섬유(cellulose nanofibers, CNF) 및 그래핀 옥사이드(graphene oxide, GO)를 포함하는 시스템을 중심 으로 키토산 기반 복합막의 최근 발전을 살펴본다. 이러한 복합막은 항균 효능, 기계적 내구성 및 조절된 약물 방출을 향상시 켜 막 성능을 향상시킨다. 이러한 다기능 막의 물리화학적 특성, 항균 결과, 세포 적합성 및 치료 잠재력을 비판적으로 평가 하여 차세대 상처 드레싱 개발에 대한 가능성을 강조한다.
공유 유기 골격체(covalent organic frameworks, COF)는 기능성을 정밀하게 설계하고 제어할 수 있는 결정성 다 공성 소재로서, 차세대 연료전지 멤브레인으로 주목받고 있다. 표준 양성자 교환막인 나피온(Nafion)은 높은 비용과 좁은 가 용 범위 등의 한계에 직면해 있다. 본 논문은 COF를 다양한 고분자 매트릭스에 도입하여 이러한 단점을 극복하기 위한 최신 연구 전략을 심도 있게 다룬다. 특히 양성자 교환막 연료전지(proton exchange membrane fuel cells, PEMFC), 음이온 교환막 연료전지(anion exchange membrane fuel cells, AEMFC), 그리고 고온(high-temperature) PEMFC (HT-PEMFC)용 COF 기반 복합막의 설계와 성능 특성에 집중한다. 다양한 COF 기능화 및 복합화 전략을 통해 이온 전도도, 기계적 강도 및 운전 안정 성을 향상시킨 주요 연구들을 비평적으로 논하며, 연료전지의 전반적인 효율 향상에 대한 COF의 잠재력을 조명한다.
Pebax 기반 멤브레인은 최근 가스 분리 응용 분야, 특히 이산화탄소(CO2) 포집과 관련하여 큰 주목을 받아왔다. 본 총설은 Pebax 기반 멤브레인에 관한 연구 논문을 종합적으로 다루고 있으며, 전통적인 투과도와 선택성 간의 상충 관계를 극복하기 위한 실험적 및 멤브레인 모듈 전략을 중점적으로 다룬다. 주요 접근법으로는 이산화탄소 친화성 첨가제와의 고분 자 블렌딩, 금속-유기 골격체(MOFs), 제올라이트 이미다졸레이트 골격체(ZIFs), 공유 유기 골격체(COFs), 이차원(2D) 나노소 재와 같은 다공성 충전재를 도입한 혼합매질 멤브레인(MMMs)을 다룬다. 또한, 멤브레인 자체 투과도의 향상을 위한 박막 복 합체(TFCs) 및 중공사형(hollow fiber) 멤브레인 기술에 대해서도 다룬다. 이러한 혁신적 접근은 다수의 Pebax 기반 멤브레인 이 Robeson upper bound를 넘어설 수 있는 높은 이산화탄소 투과도와 선택성을 동시에 달성하였다. 본 총설에서는 충전재의 분산도, 고분자-충전재 간 계면 호환성, 그리고 구조적 형태가 가스 전달 성능에 미치는 영향을 중점적으로 분석한다. 또한 가소화(plasticization), 노화(aging), 습윤 환경에서의 성능과 같은 실용적 멤브레인의 한계를 논의하며, Pebax 기반 기체 분리 멤브레인의 현재 연구 동향, 소재 설계 원리, 향후 발전 방향에 대한 심층적인 내용을 다룬다.
유리상 고분자 멤브레인은 높은 투과도와 선택도를 동시에 달성하면서도 에너지 소비가 낮아, 고성능 기체 분리 용 멤브레인 후보로 주목받아 왔다. 그러나 기존 고분자 멤브레인은 Robeson 상한선으로 표현되는 투과도-선택도 간의 고유 한 상충관계에 의해 성능이 제한되는 한계를 지닌다. 최근 수년간, 고유 자유부피가 큰 유리상 고분자, 특히 고유 미세다공성 고분자(PIMs) 및 6FDA 기반 폴리이미드와 같은 고성능 재료의 개발이 활발히 이루어지며 이러한 병목 현상을 극복하고 있 다. 고분자 주 사슬 구조 설계, 후 합성 기능화, 고분자 블렌딩, 다공성 필러를 포함한 혼합 매질 멤브레인(mixed-matrix membrane, MMM) 제조, 열재배열 공정 등 다양한 전략을 통해 기체 분리 성능이 크게 향상되었다. 본 총설에서는 유리상 고 분자 기반 기체 분리 멤브레인의 최신 연구 동향을 다룬다. 특히, PIM-1 및 유도체, 6FDA 기반 폴리이미드, MMM을 중심으 로 어떻게 투과도-선택도 상충관계, 물리적 노화, 가소화 저항성과 같은 핵심 기술적 과제를 해결하는지를 다룬다. 최신 문헌 분석을 통해, 유리상 고분자 멤브레인이 기체 분리 성능의 새로운 기준을 제시하고 있으며, 탄소 포집부터 천연가스 처리에 이르기까지 상업적 적용 가능성이 높아지고 있음을 논의한다. 마지막으로, 이러한 멤브레인 기술이 산업적 응용으로 이어지 기 위한 주요 과제와 향후 연구 방향에 대해 고찰한다.
산업의 고도화와 정밀함이 진행됨에 따라 공정과 부품의 수분 제어 기술의 중요도가 높아지고 있다. 이에 낮은 운영, 설치비용, 항상성 유지, 신뢰성이 확보된 고효율 제습 기술의 개발이 요구된다. 멤브레인 콘덴서는 고효율의 제습기술 로 주목받고 있으며, 무기막을 활용할 경우 가혹한 환경에 적용시킬 수 있을 것으로 기대된다. 소수성 미세다공성 물질인 실 리카라이트-1 (silicalite-1)과 친수성 메조다공성 물질인 γ-알루미나를 이용하여 재료물질의 기공 크기에 따른 멤브레인 콘덴 서의 성능을 비교하였다. 수열합성 및 이차성장을 통해 실리카라이트-1/α-알루미나 멤브레인 콘덴서을 제조하였으며, 보헤마 이트 졸 기법(boehmite sol-gel method)으로 합성한 후 실란코팅을 통해 소수성 개질된 γ-알루미나/α-알루미나 멤브레인 콘 덴서를 제조하였다. 수분 응축 실험을 진행한 결과, 실리카라이트-1/α-알루미나 멤브레인 콘덴서는 36.5%의 수분 제거율을 보였으며, γ-알루미나/α-알루미나 멤브레인 콘덴서는 51.4%의 수분 제거율을 보였다. 이는 메조 기공을 갖는 기공구조가 제 습성능에 영향을 미치는 중요한 요소임을 시사하며, γ-알루미나가 경제적 이점을 제공할 뿐만 아니라 우수한 성능을 나타내 어 산업용 제습 응용 분야를 위한 멤브레인 콘덴서에 적합한 물질로 보인다.
최근 신체 움직임, 심장 박동 감지 및 신체 감각 등과 같은 유연한 생체 전자 장치에 대한 연구가 급격히 성장하 고 있다. 압전 센서는 신체 움직임에 의해 생성된 압력을 전기 신호로 효율적으로 변환하기 때문에 인기 있는 웨어러블 장치 로, 자가 동력 웨어러블 장치의 대체 재생 가능한 에너지원 중 하나이다. 폴리(불화비닐리덴)(poly(vinylidene fluoride), PVDF)는 높은 기계적 강도와 쉬운 가공성 및 저렴한 재료를 가진 우수한 압전 폴리머이다. PVDF에 존재하는 5개의 결정상 중 β상이 가장 높은 쌍극자 모멘트를 가진 가장 큰 극성 구조이다. 전기 방사는 β상 배향을 유도하여 가장 높은 압전 특성 을 유도한다. 비-PVDF 고분자 멤브레인은 압전 특성은 PVDF 멤브레인에 비해 상대적으로 낮지만 높은 고분자 사슬의 유연 성, 낮은 결정성 및 높은 기공률을 가진다. 이로 인해 비 PVDF 멤브레인은 우수한 기계적 유연성과 여과 효율을 보인다. 이 리뷰에서는 생체 전기 적용을 위해 PVDF 및 nonPVDF 유형의 멤브레인이 모두 논의된다.
‘랩 온 중공 섬유 막(lab-on-hollow fiber membrane, HFM)’ 플랫폼은 다기능성과 신속한 분석 기능을 통합한 새 로운 3D 미세유체 접근 방식을 구현하여 생물학적 분석에서 혁신적인 잠재력을 입증한다. 3D HFM은 비색 정량화를 통해 다양한 생체 분자의 샘플 크기 체질(sieving)과 감지를 통합할 수 있다. 샘플 크기 체질은 그라디언트 방식으로 크기가 제공되 는 HFM의 미세한 기공을 활용하였으며, 기공의 그라디언트 크기와 높은 친수성 플럭스가 미세유체 소자 기판으로 사용되었 다. 3D HFM은 표적 단백질에 대한 접착력이 높고 나노 캐비티 종횡비가 현저히 높아 검출에 필요한 시간이 단축되었다. 이 전 2D HFM 장치와 비교했을 때 3D HFM 미세유체 소자는 다양한 감지 능력과 향상된 감도로 균일한 색상 표현 능력을 보 여주었다. 현장 검사(POCT)와 통합된 3D HFM 장치의 이러한 기능은 더욱 높은 민감도의 분석을 가능하게 한다.
A hybrid energy harvester that consisted of thermoelectric (TE) composite film and electrospun piezoelectric (PE) polymeric membranes was constructed. TE composites were fabricated by dispersing inorganic TE powders inside polyvinylidene fluoride elastomer using a drop-casting technique. The polyvinylidene fluoride-trifluoroethylene, which was chosen due to its excellent chemical resistance, mechanical stability, and biocompatibility, was electrospun onto an aluminum foil to fabricate the ultra-flexible PE membranes. To create a hybrid energy harvester that can simultaneously convert heat and mechanical energy resources into electricity, the TE composite films attached to the PE membrane were encapsulated with protective polydimethylsiloxane. The fabricated energy harvester converted the outputs with a maximum voltage of 4 V (PE performance) and current signals of 0.2 μA (TE performance) under periodical heat input and mechanical bending in hybrid modes. This study demonstrates the potential of the hybrid energy harvester for powering flexible and wearable electronics, offering a sustainable and reliable power source.