검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 6

        1.
        2021.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This paper proposes a model predictive controller of robot manipulators using a genetic algorithm to secure the best performance by performing parameter optimization with the genetic algorithm. Genetic algorithm is a natural evolutionary process modeled as a computer algorithm and has excellent performance in global optimization, so it is useful for tuning control parameters. The sliding mode controller and inverse dynamics controller are included in the lower part of the model prediction controller to minimize the problems caused by non-linearity and uncertainty of the robot manipulator. The performance superiority of the proposed method as described above has been confirmed in detail through a simulation study.
        4,000원
        2.
        2020.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study was conducted to investigate the quality of kimchi cabbages stored under a pallet unit-controlled atmosphere (PUCA), containing 2% O2 and 5% CO2, and to develop quality prediction models for cabbages stored under such conditions. Summer and winter cabbage samples were divided into PUCA-exposed groups and atmospheric airexposed control groups (in a cold storage). The control summer cabbages lost up to 8.31% of their weight, whereas the PUCA-exposed summer cabbages lost only 1.23% of their weight. Additionally, PUCA storage effectively delayed the reduction in cabbage moisture content compared with the control storage. After storage for 60 and 120 days of the summer and winter samples, respectively, the reducing sugar contents were higher in the PUCA groups than in the control groups. The linear regression analysis-derived equations for predicting the storage period, weight loss, and moisture content in the control groups, as well as those for predicting the storage period and weight loss in the PUCA groups, were appropriate according to the adjusted coefficient of determination, root mean square error, accuracy factor, and bias factor values. Therefore, this PUCA system would be useful for improving the shelf life of the postharvest summer and winter cabbages used in the commercial kimchi industry.
        4,000원
        3.
        2018.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The model predictive controller performance of the mobile robot is set to an arbitrary value because it is difficult to select an accurate value with respect to the controller parameter. The general model predictive control uses a quadratic cost function to minimize the difference between the reference tracking error and the predicted trajectory error of the actual robot. In this study, we construct a predictive controller by transforming it into a quadratic programming problem considering velocity and acceleration constraints. The control parameters of the predictive controller, which determines the control performance of the mobile robot, are used a simple weighting matrix Q, R without the reference model matrix Ar by applying a quadratic cost function from which the reference tracking error vector is removed. Therefore, we designed the predictive controller 1 and 2 of the mobile robot considering the constraints, and optimized the controller parameters of the predictive controller using a genetic algorithm with excellent optimization capability.
        4,000원
        4.
        2018.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        작물 생육 모델은 작물의 생육을 이해하고 통합하기 위해 유용한 도구이다. 완전제어형 식물공장에서 엽채류로 활용하기 위한 퀴노아(Chenopodium quinoa Willd.)의 초장, 광합성률, 생장 모델을 예측하기 위한 모 델을 1차식, 2차식 및 비선형 및 선형지수 등식을 사용하여 개발하였다. 식물 생육과 수량은 정식 후 5일간격으로 측정하였다. 광합성과 생장 곡선 모델을 계산하였다. 초장과 정식 후 일수(DAT)간의 선형 및 곡선 관계를 얻었으나, 초장을 정확하게 예측하기 위한 모델은 선형 등식이었다. 광합성률 모델을 비선형 등식을 선택하였다. 광보상점, 광포화점, 및 호흡률은 각각 29, 813 and 3.4 μmol·m-2·s-1였다. 지상부 생체중과 건물중은 선형관계를 보였다. 지상부 건물중의 회귀계수는 0.75 (R2=0.921***)였다. 선형지수 수식을 사용하여 시간 함수에 따른 퀴노아의 지상부 건물중 증가를 비선형 회귀식으로 수행하였다. 작물생장률과 상대생장률은 각각 22.9 g·m-2·d-1 and 0.28 g·g-1·d-1였다. 이러한 모델들은 정확하게 퀴노아의 초장, 광합성률, 지상부 생체중과 건물중을 예측할 수 있다.
        4,000원
        5.
        2014.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구에서는 모델 기반의 온실 환경 제어에 활용될 수 있는 미기상 환경 예측 모형을 개발하고자 하였다. 전산유체역학 시뮬레이션을 활용하여 다양한 기상 조건과 온실의 환기 구조에 따른 온실 내부의 미기상 변화와 환기창에서의 환기량 변화를 모의하고, 다중회귀분석을 통해 수치 모형을 제시하였다. 비정상상태의 환기 작용을 모의한 결과, 환기창 개방 후 환기 효과가 완전히 나타나기까지는 3분 ~ 20분 정도의 시간이 소요될 수 있는 것으로 나타났다. 기존의 센서 실측에 기반을 둔 대부분의 환경 조절 제어 시스템의 경우에는 측정값에 따른 피드백에 의해 환경 제어가 동작하므로 온실 내부의 기온이 상승한 이후에 환경 제어를 시작하게 되지만, 모델 기반의 환경 조절 제어 시스템을 도입하면 이러한 3분~20분 정도의 시간을 사전에 고려하여 적정 환경을 제어할 수 있도록 미리 환기창의 조작이 이루어지게 된다. 작은 규모의 온실에서 는 이러한 영향이 미비할 수 있지만, 근래에 증가하고 있는 대규모 온실들에 대해서는 온실 내부 작물 재배 환경의 균일성과 적정성, 안정성을 확보하고 환경 조절의 경제성을 추구할 수 있는 모델 기반의 환경 조절 시스템이 필수적이다. 본 연구에서 제시된 수치 모형들은 외부의 기온과 풍속, 지면 온도, 일사량 등의 기상 환경과 온실의 천창 개폐율에 따라 유도되는 자연 환기의 성능을 온실 내 미기상 변화와 환기창을 통한 환기량 값으로 제시하고 있으며, 전산유체역학 시뮬레이션 결과와 비교하여 각각 58% ~ 92%, 76% ~ 93%의 예측력을 보였다. 미기상의 변화는 온실을 9개의 세부 영역으로 구분하여 각 영역 에서의 기온 하락 정도로 나타내며, 환기량은 지붕에 형성된 6개의 천창에서의 공기 유출입량을 각각 제시하여 준다. 환기 작용에 의한 미기상의 변화는 반드시 환기창에서의 환기량에 의해 예측되지는 않으므로 환기량과 환기의 효과를 구분하여 적용하는 것이 중요할 것이다. 이러한 수치 모형들은 모델 기반 환경 제어 시스템에서 가상의 환기창 동작에 따른 환기 성능을 예측하는데 활용될 수 있으며, 전산유체역학 시뮬레이션과 같은 매우 복잡한 예측 모델이 비해 상당히 간단한 형태로 이루어져 있어 빠른 계산 시간을 보장한다. 이는 실시간 제어의 관점에서는 복잡한 예측 모델들에 비해 실시간 예측 과 제어가 가능하다는 큰 장점을 가져다준다. 본 연구를 통해 개발되고 시도된 결과들은 모델 기반의 온실 복합 환경 제어 시스템을 위한 알고리즘을 개발하는데 활용될 것이다. 또한 이러한 활용은 농업에 IT 기술을 접목하여 농가의 노동력 부족을 극복하고 생산성 향상과 경쟁력 확보를 도모하는 농업 선진화에 기여할 것으로 기대된다.
        4,200원
        6.
        2020.09 KCI 등재 서비스 종료(열람 제한)
        A differential drive wheeled robot is a kind of mobile robot suitable for indoor navigation. Model predictive control is an optimal control technique with various advantages and can achieve excellent performance. One of the main advantages of model predictive control is that it can easily handle constraints. Therefore, it deals with realistic constraints of the mobile robot and achieves admirable performance for trajectory tracking. In addition, the intention of the robot can be properly realized by adjusting the weight of the cost function component. This control technique is applied to the local planner of the navigation component so that the mobile robot can operate in real environment. Using the Robot Operating System (ROS), which has transcendent advantages in robot development, we have ensured that the algorithm works in the simulation and real experiment.