Infrared(IR) heating has many advantages, such as energy efficiency, reduced heating time, cleanliness, equipment compactness, high drying rate and easy automation. These features of IR heating provide widely industrial applications, such as surface heat treatment in semiconductor fabrication, thermoforming of polymers, drying and disinfection of food products, heating to metal forging, and drying of wet materials. In this study, the characteristics of a protected gold mirror were examined by spectrophotometer and the lifetime of the coating layers were evaluated by a cross-cutting method and salt spray test. The effects of manufacturing conditions on the protected gold mirror were seen and remedies for these effects were noted in order to improve the properties of the protected gold mirror in the drying process. The reflectance and lifetime of the protected gold mirror was influenced by manufacturing conditions, such as surface roughness and forming conditions of the anti-oxide layer, the adhesion layer, the reflecting layer and the protection layer. The results of this study showed that the protected gold mirror manufactured using a buffing method for pre-treatment resulted in the most effective reflectance. In addition, Al2O3 coating on an Al substrate as an anti-oxide layer was more effective than the anodizing process in the test of reflectance. Furthermore, the protected gold mirror manufactured by layers forming of various materials resulted in the most effective reflectance and lifetime when coated with Al2O3 as the anti-oxide layer, coated Cr as the adhesion layer, and coated MgF2 as the protection layer.
연속적으로 이루어지는 제작ㆍ조립 단계에서 변위하중을 받는 CRTS 반사판의 초기 정적평형상태론 결정하기 위하여 변위증분법을 사용하여 기하학적 비선형 유한요소 해석기법을 제시하고 반사반의 이상적인 형상파 실 제자 형상과의 차이, 즉 형상오차에 케이블 및 구조적 인자가 미치는 영향에 관한 연구를 수행한다. 본 연구 결과는 Galerkin method 와 NASS 98 Program을 사용하여 해석한 결과와 비교ㆍ검증하여 그 타당성을 입증한다.