Volatile organic compounds(VOCs) are toxic carcinogenic compounds found in wastewater. VOCs require rapid removal because they are easily volatilized during wastewater treatment. Electrochemical advanced oxidation processes(EAOPs) are considered efficient for VOC removal, based on their fast and versatile anodic electrochemical oxidation of pollutants. Many studies have reported the efficiency of removal of various types of pollutants using different anodes, but few studies have examined volatilization of VOCs during EAOPs. This study examined the removal efficiency for VOCs (chloroform, benzene, trichloroethylene and toluene) by oxidization and volatilization under a static stirred, aerated condition and an EAOP to compare the volatility of each compound. The removal efficiency of the optimum anode was determined by comparing the smallest volatilization ratio and the largest oxidization ratio for four different dimensionally stable anodes(DSA): Pt/Ti, IrO2/Ti, IrO2/Ti, and IrO2-Ru-Pd/Ti. EAOP was operated under same current density (25 mA/cm2) and electrolyte concentration (0.05 M, as NaCl). The high volatility of the VOCs resulted in removal of more than 90% within 30 min under aerated conditions. For EAOP, the IrO2-Ru/Ti anode exhibited the highest VOC removal efficiency, at over 98% in 1 h, and the lowest VOC volatilization (less than 5%). Chloroform was the most recalcitrant VOC due to its high volatility and chemical stability, but it was oxidized 99.2% by IrO2-Ru/Ti, 90.2% by IrO2-Ru-Pd/Ti, 78% by IrO2/Ti, and 75.4% by Pt/Ti anodes The oxidation and volatilization ratios of the VOCs indicate that the IrO2-Ru/Ti anode has superior electrochemical properties for VOC treatment due to its rapid oxidation process and its prevention of bubbling and volatilization of VOCs.
Insoluble catalytic electrodes were fabricated by RF magnetron sputtering of Pt on Ti substrates and the performance of seawater electrolysis was compared in these electrodes to that is DSA electrodes. The Pt-sputtered insoluble catalytic electrodes were nearly 150 nm-thick with a roughness of 0.18μm, which is 1/660 and 1/12 of these values for the DSA (dimensionally stable anodes) electrodes. The seawater electrolysis performance levels were determined through measurements of the NaOCl concentration, which was the main reaction product after electrolysis using artificial seawater. The NaOCl concentration after 2 h of electrolysis with artificial seawater, which has 3.5% NaCl normally, at current densities of 50, 80 and 140 mA/cm2 were 0.76%, 1.06%, and 2.03%, respectively. A higher current density applied through the electrodes led to higher electrolysis efficiency. The efficiency reached nearly 58% in the Pt-sputtered samples after 2 h of electrolysis. The reaction efficiency of DSA showed higher values than that of the Pt-sputtered insoluble catalytic electrodes. One plausible reason for this is the higher specific surface area of the DSA electrodes; the surface cracks of the DSAs resulted in a higher specific surface area and higher reaction sites. Upon the electrolysis process, some Mg- and Ca-hydroxides, which were minor components in the artificial seawater, were deposited onto the surface of the electrodes, resulting in an increase in the electrical resistances of the electrodes. However, the extent of the increase ranged from 4% to 7% within an electrolysis time of 720 h.
1970년대 수출주도 고도성장을 위해 정부는 조선・철강・기계 등의 중화학공업을 선택적으로 집중육성 하였다. 그 결과 일반기계산업은 1970년 수출 8백만불에서 2015년 현재 218,262백만불로 약 27,000배 이상 성장하였다. 일반기계산업에 있어 금속가공 공정은 필수적이며, 금속가공 공정에서 필요로 하는 것이 공작기계(Mother machine)와 절삭유(Soluble Cutting Fluids, SCF)이다. 절삭조건 개선에 사용되는 절삭유는 첨가제, 사용용도 등에 따라 원액으로 사용하는 비수용성과 물로 희석해서 사용하는 수용성으로 나뉜다. 국내 절삭유 이용량의 60%이상이 수용성 절삭유로 비수용성 절삭유의 오일미스트(Oil-mist), 폐유처리과정에서 유독성 물질 발생 등의 문제로 수용성 절삭유 사용량이 점차 증가하였다. 또한 절삭 성능 향상을 위한 방부제, 윤활제, 방청제, 부식방지제, 세정제, 극압 첨가제 등 각종 화학물질 첨가로 인해, 노출될 경우 췌장, 피부, 담낭, 방광, 소화기계 등 인체의 여러 조직에 암을 유발할 수 있으며, 각종 호흡기계 질환과 피부질환을 초래하는 것으로 알려져 있다. 인체에 미치는 영향 외에도 수용성 절삭유에는 고농도의 유기성분과 질소화합물 등이 함유되어 있어 적절한 처리 없이 수계로 유출시 부영양화, 녹조현상 등과 같은 문제를 일으킬 수 있으며 산화반응에 의해 수계의 용존산소를 감소시키므로 그 처리의 중요성이 부각되고 있다. 본 연구에서는 실공정에서 발생한 폐수용성절삭유를 원시료로 하여 대표적인 불용성 전극인 Ti/IrO2 전극을 이용하여 전기화학적 처리를 진행하였으며 연구에 사용한 장치의 모식도를 Fig. 1에, 시료의 성상을 Table 1에 나타내었다.
1900년대 초부터 금속 가공 장비의 수명 연장 및 가공물의 품질 향상을 위해 금속 가공 공정에 절삭유가 이용되어 왔다. 금속 가공 특성에 따라 절삭효율 향상을 위해 각종 첨가제를 포함시켜 여러 종류의 절삭유가 제조되고 있으며, 일반적으로 수용성과 비수용성으로 분류된다. 비수용성 절삭유의 경우, 폐유처리과정에서 유독성 물질 발생, 발연・발화 등의 문제로 수용성 절삭유의 사용이 점차 증가해 왔으며, 국내에서 이용되는 절삭유의 60% 이상이 수용성 절삭유이다. 사용된 수용성 절삭유는 비수용성 절삭유와 같이 소각처리 하기에는 비용이 크며, 수계로 유출시 COD 약 30,000~100,000ppm의 고농도 유기성분에 의해 인근 수계를 오염시킬 수 있으므로 각별한 처리가 필요하다. 따라서 본 연구에서는 Ti-IrO2전극을 이용하여 NaCl 첨가, 인가전압 변화를 통해 수용성 절삭유 내 오염물질의 전기화학적 처리에 미치는 영향을 검토하고, 수용성 절삭유의 전기화학적 처리에 대한 기초자료를 제공하고자 한다. 시료는 U사의 W1-1종 수용성 절삭유를 이용하였으며 증류수와 혼합하여 5% 농도의 인공 시료를 제조하였다. 시료의 특성은 Table 1, 실험 조건은 Table 2에 나타내었다.
The aim of this research was to evaluate the performance of insoluble electrode for the purpose of degradation of Rhodamine B (RhB) and oxidants generation [N,N-Dimethyl-4-nitrosoaniline (RNO, indicator of OH radical), O3, H2O2, free Cl, ClO2)]. Methods: Four kinds of electrodes were used for comparison: DSA (dimensional stable anode; Pt and JP202 electrode), Pb and boron doping diamond (BDD) electrode. The effect of applied current (0.5~2.5 A), electrolyte type (NaCl, KCl and Na2SO4) and electrolyte concentration (0.5~3.5 g/L) on the RNO degradation were evaluated. Experimental results showed that the order of RhB removal efficiency lie in: JP202 > Pb > BDD ≒> Pt. However, when concerned the electric power on maintaining current of 1 A during electrolysis reaction, the order of RhB removal efficiency was changed: JP202 > Pt ≒ Pb > BDD. The total generated oxidants (H2O2, O3, free Cl, ClO2) concentration of 4 electrodes was Pt (6.04 mg/W) > JP202 (4.81 mg/W) > Pb (3.61 mg/W) > BDD (1.54 mg/W), respectively. JP202 electrode was the best electrode among 4 electrodes from the point of view of performance and energy consumption. Regardless of the type of electrode, RNO removal of NaCl and KCl (chlorine type electrolyte) were higher than that of the Na2SO4 (sulfuric type electrolyte) RNO removal. Except BDD electrode, RhB degradation and creation tendency of oxidants such as H2O2, O3, free Cl and ClO2, found that do not match. RNO degradation tendency were considered a simple way to decide the method which is simple it will be able to determinate the electrode where the organic matter decomposition performance is superior. As the added NaCl concentration was increases, the of hydrogen peroxide and ozone concentration increases, and this was thought to increase the quantity of OH radical.