High-rise buildings are equipped with TMD (Tuned Mass Damper), a vibration control device that ensure the stability and usability of the building. In this study, the seismic response control performance was evaluated by selecting the design variables of the TMD based on the installation location of the twisted irregular building. To this end, we selected analysis models of 60, 80, and 100 floors with a twist angle of 1 degree per floor, and performed time history analysis by applying historical seismic loads and resonant harmonic loads. The total mass ratio of TMDs was set to 1.0%, and the distributed installation locations of TMDs were selected through mode analysis. The analysis results showed that the top-floor displacement responses of all analysis models increased, but the maximum story drift ratio decreased. In order to secure the seismic response control performance by distributed installation of TMDs in twisted irregular buildings, it is judged that the mass ratio distribution of TMDs will act as a key variable.
Piloti-type structures with vertical irregularity are vulnerable to earthquakes due to the soft structure of the first story. Structural characteristics of buildings can significantly affect the seismic loss function, calculated based on seismic fragility, and therefore need to be considered. This study investigated the effects of the number of stories and core locations on the seismic loss function of piloti-type buildings in Korea. Twelve analytical models were developed considering two variations: three stories (4-story, 5-story, and 6-story) and four core locations (center core, x-eccentric core, y-eccentric core, and xy-eccentric core). The interstory drift ratio and peak floor acceleration were assessed through incremental dynamic analysis using 44 earthquake records, and seismic fragility was derived. Seismic loss functions were calculated and compared using the derived seismic fragility and repair cost ratio of each component. The results indicate that the seismic loss function increases with more stories and when the core is eccentrically located in the piloti-type structure model. Therefore, the uncertainty due to the number of stories and core location should be considered when deriving the seismic loss function of piloti-type structures.
In this study, we investigated the dynamic characteristics of three irregular building models to analyze the effectiveness of displacement response control with Tuned Mass Damper (TMD) installation in twisted irregular buildings. The three irregular models were developed with a fixed angle of twist per story at one degree, subjected to three historical seismic loads and resonant harmonic loads. By designing TMDs with linear and dashpot attributes, we varied the total mass ratio of the installed TMDs from 0.00625% to 1.0%, encompassing a total of 10 values. Two TMDs were installed at the center of the top story of the analysis model in both X and Y directions to evaluate displacement response control performance based on TMD installation. Our findings suggest that the top displacement response control performance was most effective when a 1.0% TMD was installed at the top layer of the analysis model.
비정형 형태의 건축물에서 발생하는 풍하중은 KBC-2016의 풍하중 산정식으로 산정할 수 없기 때문에 풍동실험을 통해 풍하 중을 평가할 수밖에 없다. KBC-2016으로 비정형건축물을 정형적인 건축물로 가정하여 풍하중을 평가한다면 과소평가될 우려가 있 다. 그러므로 보다 합리적인 평가를 위해 풍하중을 할증시켜줄 필요가 있다. 본 연구에서는 평면형태가 L자인 건축물을 대상으로 풍력 실험을 실시하여 풍하중을 산정하였으며, 이를 KBC-2016으로 산정한 풍하중과 비교하였다. 풍동실험을 통해 구한 L자형 건축물의 풍 하중과 KBC-2016으로 L자형 건축물과 동일한 폭과 깊이를 가진 사각형평면 건축물을 대상으로 구한 풍하중의 비로 풍하중 할증계수 를 도출하였다. 풍하중 할증계수는 1.6~2.2로 나타났다. KBC-2016에 의해 평가한 사각형 건축물의 풍하중에 풍하중 할증계수를 곱하 면 L자형 건축물의 풍하중이 된다.
This study examines the seismic failure of RC low-rise building structures having irregularities at the ground story during the 15 November 2017 Pohang, Korea, earthquake, Mw = 5.4, which is the second strongest since the government began monitoring them in 1978 in South Korea. Some 2,000 private houses were damaged or destroyed in this earthquake. Particularly, serious damage to the piloti story of RC low-rise residential building structures of fewer than five stories was observed within 3 km of the epicenter with brittle shear failure of columns and walls due to severe torsional behavior. Buildings below six stories constructed before 2005 did not have to comply with seismic design requirements, so confinement detailing of columns and walls also led to inadequate performance. However, some buildings constructed after 2005 were damaged at the flexible side of the piloti story due to the high torsional irregularity. Based on these results, this study focuses on the problems of the seismic torsion design approach in current building codes.
Construction techniques and materials are developing and structures are designed to be irregular shaped, and therefore more detailed structural analysis is required. The purpose of this study is to analyze the cause of accidents related to falsework systems during construction and discuss prevention methods in order to prevent accidents relate to prefabricated shoring system during construction. In this paper structural analysis was conducted to study the influence of slab irregularity on system supports and analysis to investigate the participation of the bracing in the system support.
비정형 초고층 구조물은 골조 직교성이 해제되고, 형상이 복잡해 기존 설계방식보다 많은 문제점이 발생된다. 비정형성으로 인한 문제점은 설계안을 지속적으로 변경시켜 프로젝트의 효율성을 저하시킨다. 또한 해외프로젝트의 경우 해당업체 간혹은 해당국가 간 의견차로 국내보다 더욱 많은 변경상황이 발생되고 있다. 따라서 지속적인 변경상황에 전산플랫폼을 사용할 경우 효율적으로 설계변경업무에 대처할 수 있다. 파라메트릭 기반의 전산플랫폼인 StrAuto를 이용할 경우 최적의 구조 설계대안을 신속히 선정할 수 있다. 특히 StrAuto는 비선형 내진성능평가를 위한 해석 툴 간의 신속한 모델링 연동도 효율적으로 가능하다. 그래서 본 연구에서는 지진하중 변경에 따른 전산플랫폼을 이용한 내진성능평가 프로세스를 현재 구조설계가 진행 중인 몽골지역 최고층 빌딩 프로젝트에 적용하고 검증하려 한다.