수목의 정확한 수령은 수목의 수간과 뿌리 사이에서 관찰 되는 나이테 수로 결정된다. 하지만 일반적으로 해당 부위 가지면 아래에 위치하며, 노출된 경우라 하더라도 지면으로부터의 높이가 제한되어 있어 생장추를 이용한 생장편 채취가 매우 어렵다. 이러한 이유로 가슴 높이에서 생장추로 채취한 생장편의 횡단면에서 관찰되는 나이테 수에 생장편 채취 높이까지의 생육하는데 소요되는 기간을 합하여 수령을 추정하다. 따라서 수고생장 속도에 관한 기초자료는 수목의 수령을 추정하는데 중요한 기초자료가 된다.
구상나무는 우리나라에만 자생하는 고유수종이다. 하지만 환경변화로 인해 고사가 급격히 증가하고 있는 추세이다. 구상나무의 고사를 유도하고 있는 환경인자들로 온도 상승, 수분 스트레스 증가, 태풍 등을 일반적으로 제시하고 있으나, 구상나무의 생물학적 한계 수령도 고사의 원인이 될 수 있다는 의견도 제시되었다. 2017년 지리산국립공원 반야봉 일대에서 실시된 구상나무 고사목 100여 본의 수령을 조사한 결과 100년이 넘는 구상나무가 매우 제한적이었기 때문이다. 하지만 구상나무의 수령과 관련된 연구 중에 생장편을 채취한 높이까지 구상나무의 수고생장이 도달하는 기간이 보정된 것이 없기 때문에 실제 수령은 다소 증가 할 것으로 추정된다.
본 연구는 지리산 아고산대에서 고사한 구상나무의 수고 생장 속도와 청주 미동산수목원에 식재된 구상나무의 수고 생장을 비교하기 위해 수행되었다. 아고산대와 저지대의 구상나무 수고생장 속도에 차이가 있는지 확인하기 위하여 실시되었다. 또한 구상나무 수령 추정 시 얼마나 많은 수령이 고려되어야 하는지 알기 위하여 실시되었다.
지리산 아고산대에서 고사한 구상나무 1본과 청주 미동산 수목원에 식재된 구상나무를 대상으로 10cm 간격으로 나이테 수를 조사한 결과 가슴높이(120cm)까지 생장하는 데 소요되는 기간이 각각 17년과 11년이었으며, 처음 10cm 까지 수고생장을 하는데 각각 4년과 3년이 소요되어 가장 많은 기간이 소요되었다. 이후, 지리산 아고산대 구상나무 는 80cm까지 10cm씩 수고생장을 하는데 약 2년이 소요되었으며, 청주 미동산수목원 구상나무는 40cm까지 10cm씩 수고생장을 하는데 약 2년이 소요되었다.
이상의 연구를 통해 아고산대 구상나무가 저지대에서 생육하고 있는 구상나무보다 수고생장 속도가 느리며, 가슴높이에서 채취한 생장편을 이용하여 구상나무의 수령을 추정 하기 위해서는 최소한 10년 이상을 추가해야 함을 확인되었다. 생육환경에 따라 수고생장 속도가 다르기 때문에 생육 환경에 따른 구상나무의 수고생장 속도에 관한 연구가 체계 적으로 수행되어져야 할 것이다. 또한, 구상나무의 수고생장은 느리기 때문에 수정 추정 시 보다 세심한 주의가 요구됨이 함께 확인되었다.
본 연구는 정식 후 토양의 수분 함량에 따른 배추의 생장과 토양 수분에 따른 배추의 생리 반응 모델 개발을 위한 유효 매개변수를 알아보고자 수행되었다. 처리는 5개 수준으로 각각 0, 200, 300, 400 및 500mL/d/ plant로 매일 1회 관수하여 토양 수분 함량 차이로 구분하였다. 토양수분과 기공전도도를 정식 후 10일부터 6일 간격으로 총 5회 측정하였으며(단, 0과 200mL/d/plant 처리구는 총 3회 측정), 광합성기구 활성을 알아보고자 정식 후 25일에 충분히 관수된 처리구(500mL/d/plant)와 결핍 처리구(0mL/d/plant)에서 이산화탄소 포화 곡선을 작성하였고, 정식 후 38일에 생장을 조사하였다(단, 관수 량 처리구 0과 200mL/d/plant는 위조되어 정식 후 29일에 생장 조사함). 토양수분과 배추의 기공전도도는 밀접한 관계가 있었으며(r2=0.999), 직선의 정의 상관관계로 y = 6097.4x − 4.2984였다. 충분히 관수된 배추의 이산화 탄소 포화곡선은 정상적인 포화 곡선을 보였으나, 토양 수분이 극도로 결핍된 배추는 체내로 이산화탄소가 확산 되어 들어가지 않으며, 광합성 속도도 약 6.5μmol·m-2·s-1 미만으로 급격히 감소하였다. 충분히 관수된 처리구 (500mL/d/plant)에 비하여 토양 수분 결핍구(0mL/d/plant 처리)에서는 약 6.8배 이상 건물생산량이 감소하였다. 그리고 토양의 수분 함량에 따라 엽면적 지수가 로그함수적(y = 16.573 + 3.398 ln x)으로 증가하였고, 결정 계수 r2=0.913로 높은 상관 관계가 있었다. 결과적으로, 정식 초기의 토양 수분 함량이 결핍되면 배추의 생장이 지연 되며, 광합성 속도와 기공전도도가 낮아지는 것으로 밝혀졌다. 또한, 토양수분 함량과 배추 생장 반응 모델을 기공전도도와 엽면적 지수를 변수로 활용하면 정확도가 우수한 모델을 개발할 수 있을 것으로 기대된다.
본 연구에서는 인공광하의 풍동내에서 기류속도와 생육실내의 위치가 플러그묘 개체군의 생장에 미치는 효과를 분석하였다 기류속도가 증가하면 모개체군내에서의 상대습도는 감소하나, 포차는 증가한다. 이에 따라 증산이 활발하게 이루어져 잎에서의 수분포텐셜이 저하되며 묘개체군 위에서 공기역학적 저항이 감소함에 따라 확산계수가 높게 나타난다. 그 결과로서 0.93m.s-1의 기류속도에서 줄기 길이, 줄기직경에 대한 줄기 길이의 비, 초장, 엽수는 유의성이 인정될 만큼 작게 나타났다. 묘개체군의 순광합성속도는 기류속도의 증가와 함께 증가되면서 0.7~0.9 m.s-1에서 높게 나타났다. 생육실내의 위치 즉 기류의 진행방향을 따라 줄기 직경과 지하부 건물 중은 감소하였으나, 줄기 직경에 대한 줄기 길이의 비와 엽면적은 증가하는 것으로 나타났다. 이밖에 플러그묘의 생체중 또는 건물 중에 대한 T/R비는 기류속도의 변화와 무관하게 각각 2.8~3.5, 3.2~3.9로서 비슷하게 나타났으나, 건물율은 지상부에서 8.1~9.4, 지하부에서 10.1~10.9로서 지하부에서 다소 높게 나타났다. 그러므로 기류속도의 크기와 기류의 진행방향에 따라 묘개체군 위에서의 확산계수가 다르게 나타나며 이로 인하여 모개체군의 생장 차이가 나타남을 알 수 있다. 따라서 식물모공장과 같이 인공광을 이용한 반폐쇄 식물생산 시스템에서 품질이 균일한 모를 생산하려면 묘개체군의 미기상에 기초한 적정 환경조건의 확립이 요구된다.
이 연구는 폐쇄형 식물공장 시스템 내에서 LED 펄스광의 튜티비 및 광도(PPFD)가 상추의 생장 및 광합성률에 미치는 영향을 구명하기 위해 수행하였다. 파종 3주 후 ‘청치마’ 및 ‘청치마’ 실생묘를 bar-type LED(red:blue:white = 5:2:1) 하에서 4주간 생육시켰다. LED 펄스(on/off) 간격은 연속조사(continuous), 200/200μs, 133/266μs, 100/300μs의 4가지로 설정하였는데, 이를 듀티비(duty ratio, DR, 한 주기 대비 점등시간 비율)로 표시하면 각각 100%, 50%, 33%, 25%였다. 이때 광도(PPFD)는 DR 100, 75, 50% 처리에서는 두 수준[고광(high light, HL), 저광(low light, LL)]으로 처리되었고, 광주기는 16시간이었다. 식물공장 내부의 온도는 주야간 20±2°°C, 상대습도는 약 70±10%로 유지되었다. 양액은 온도 20±2°C, EC는 1.2mS·cm-1, pH는 5.8±0.2로 유지되었고, NFT 방식으로 공급되었다. 처리 4주 후 ‘청치마’ 상추의 생체중과 건물중은 DR 100% HL 하에서 가장 높았고, DR 75% HL 및 DR 50% HL과는 유의차가 없었다. 엽수, 엽면적, 잎 두께(비엽면적의 역수)는 DR 100%, 75%, 50%의 HL처리에서 유의하게 큰 값을 나타내었다. 광이용효율(LUE)은 PPFD에 관계없이 연속광보다 펄스광 처리에서 높게 나타났으며, 특히 DR 25% HL 하에서 가장 높았고, DR 75% HL과 DR 50% HL 처리도 DR 100% HL보다 높은 값을 보였다. ‘적치마’ 상추의 생체중과 건물중은 DR 100% HL 하에서 가장 컸고, DR 100% LL, DR 75% HL, DR 50% HL 하에서 두번째로 컸다. LUE는 ‘청치마’와 같이 연속광보다 펄스광 하에서 높았다. 두 품종의 광합성 속도는 적산 PPFD에 비례하였으며, DR의 효과는 적었다. 결론적으로 펄스광은 상추의 LUE를 높이므로 LED를 광원으로 사용하는 폐쇄형 식물공장의 에너지 절감에 기여할 수 있을 것이다.
The time of panicle initiation change by transplanting date, and this change is affected by heading ecotype and seedling age. So we assessed the variations of panicle initiation, spikelet differentiation and heading date affected by transplanting dates, rice cultivars and seedling ages. And we compared the growth durations and meterological factors between chief growth stages. The differences of growth duration from transplanting date to spikelet differentiation by seedling age were 1~3 days in all transplanting of Unkwang, but it increased to 4 days in Hwayeong transplanting on May 1 and June 30, and Nampyeong transplanting on June 30. The growth durations from panicle initiation to heading of Unkwang and Hwayeong increased until transplanting time by May 31, and decreased thereafter. The growth durations of Nampyeong increased in transplanting on May 16 and May 31. In each transplanting, mean temperature of 30 days after heading was highest in early transplanting, but sunshine hours in the period were highest in transplanting on June 30 in Unkwang, in transplanting on June 15 in Hwayeong, and higher in transplanting on May 31 and June 15 in Nampyeong. The growth duration between spikelet differentiation and heading showed variation according to rice cultivars and transplanting date, Those were 22~26 days in Unkwang, 21~27 days in Hwayeong and 21~28 days in Nampyeong.
소나무 수형목 풍매차대를 대상으로 수고생장에 대하여 일반조합능력을 평가하고자 본 연구를 수행하였다. 본 연구에 사용된 가계는 총 232가계로 각 수령별 10년생 230가계, 20년생 184가계, 30년생 122가계를 대상으로, 차대검정림에서의 수고 생장 조사 자료를 이용하였다. 차대검정림은 1975년부터 조성하기 시작하여 1987년까지 모두 7회에 걸쳐 1~4 지역에 조성하였다. 이러한 조성 년도, 지역의 차이를 표준화를 통하여 균일한 수치로 보정하여