본 연구에서는 다동온실내 작물의 생체정보와 실내외 환경요인의 정보를 얻기 위하여 복합환경제어용 시스템을 개발하였다. 이를 원예연구소에 설치하여 작동이 잘되는 것을 확인하였다. 앞으로 복합환경제어가 될 수 있도록 작물에 대한 온실의 환경 및 생체정보에 관한 연구가 필요할 것이다. 연구결과를 요약하면 다음과 같다. 1. 하드웨어는 각 기능별로 완전한 독립구조로 된 모듈형태로 구성이 되며, 각 모듈이 슬롯형태로 제작되어 수리 및 수정이 용이하고, 이동이 편리한 장점을 가지고 있다. 2 PC에서 통신을 통하여 시스템의 규모를 조절할 수 있으며, 각 입출력 단자의 기능 및 범위를 조절할 수 있다. 또한 각 제어 블록 사이에도 통신이 가능하여 유동성과 확장성이 뛰어나다. 3 환경제어 로직은 기존의 시스템에서 사용되었던 타이머를 이용한 작동기기별로의 제어가 아닌 온실전체의 온도와 습도를 위주로 하여 시퀀스 제어를 하도록 구성하였다.
본 연구에서는 인공광하의 풍동내에서 기류속도와 생육실내의 위치가 플러그묘 개체군의 생장에 미치는 효과를 분석하였다 기류속도가 증가하면 모개체군내에서의 상대습도는 감소하나, 포차는 증가한다. 이에 따라 증산이 활발하게 이루어져 잎에서의 수분포텐셜이 저하되며 묘개체군 위에서 공기역학적 저항이 감소함에 따라 확산계수가 높게 나타난다. 그 결과로서 0.93m.s-1의 기류속도에서 줄기 길이, 줄기직경에 대한 줄기 길이의 비, 초장, 엽수는 유의성이 인정될 만큼 작게 나타났다. 묘개체군의 순광합성속도는 기류속도의 증가와 함께 증가되면서 0.7~0.9 m.s-1에서 높게 나타났다. 생육실내의 위치 즉 기류의 진행방향을 따라 줄기 직경과 지하부 건물 중은 감소하였으나, 줄기 직경에 대한 줄기 길이의 비와 엽면적은 증가하는 것으로 나타났다. 이밖에 플러그묘의 생체중 또는 건물 중에 대한 T/R비는 기류속도의 변화와 무관하게 각각 2.8~3.5, 3.2~3.9로서 비슷하게 나타났으나, 건물율은 지상부에서 8.1~9.4, 지하부에서 10.1~10.9로서 지하부에서 다소 높게 나타났다. 그러므로 기류속도의 크기와 기류의 진행방향에 따라 묘개체군 위에서의 확산계수가 다르게 나타나며 이로 인하여 모개체군의 생장 차이가 나타남을 알 수 있다. 따라서 식물모공장과 같이 인공광을 이용한 반폐쇄 식물생산 시스템에서 품질이 균일한 모를 생산하려면 묘개체군의 미기상에 기초한 적정 환경조건의 확립이 요구된다.
태양열 에너지의 효율적인 이용과 자동화 장치의 개발을 목표로 지중가온의 온도변화 특성을 실험. 분석한 결과는 다음과 같다. 1) 10월 13일의 1일 하우스 내기온이 주야간에 24℃의 차이가 있으며, 무가온시 지온변화는 지중 10 m 부근에서 6℃, 지중 20 cm 부근에서는 3℃정도의 차이를 보이고 있다. 2) 20시경에 내기온과 지온차가 가장 작은 것으로 나타났으며, 지중 20 cm 부근의 온도변화는 내기온이 가장 낮은 오전 7시부터 약 3시간이 경과된 오전 10시에 최저가 되었다 3) 가온수의 온도를 40℃, 50℃, 60℃로 변화하였을 때 지중 10 cm의 최저은도는 약 20℃ 지중 20 cm의 최저온도는 약 23℃로 나타나 가온온도가 40℃ 이상일 경우 가온온도에 따른 지중 10~20 cm사이의 온도차는 매우 작았다. 4) 지중 15~20 cm의 지온이 20℃가 되기 위해서는 가온수의 온도를 40℃ 이하가 되도록 설정하여야한다. 5) 가온수의 온도가 40℃, 50℃, 60℃이고 파이프 매설 깊이가 12 m일 경우 유입구와 유출구의 1일 평균온도차는 40℃일 경우 3.5℃ 50℃일 경우 4.4℃, 60℃일 경우 5.4℃정도로 이 구간에서 온도변화식은 T = 0.09591T+2.5451(R2= 0.9966)로 거의 선형적으로 변화하였다. 6) 가온수 온도가 40℃의 경우 지중 15~20 cm, 50℃의 경우는 지중 13~19 cm, 60℃의 경우는 12~17 cm 부근이 경계영역으로 판단되었다. 7) 재배기간중 하우스 내기온을 11℃ 이상으로 유지하고, 가온수의 온도를 28℃로 순환 결과 지중 15 cm 이하에서 최저지온를 20℃ 이상의 온도를 유지할 수 있어 저온수공급에 의한 온도상승효과가 뚜렷이 나타났다. 8) 가온수의 온도를 28℃로 하여 지중가온 한 결과 지중 15~20 cm사이에 온도변화는 무가온구에 비하여 공히 4℃~7℃가 상승되었다.
겨울철 오이 시설재배에서 태양열 시스템을 이용한 지중가온의 효과를 구명하고자 지중 40 cm에 15 mm의 PPC파이프를 130 cm이랑 에 4열 매설한 후 지중 20 cm의 지온을 22~23℃로 설정한 후 1996년 11월 7일부터 1997년 1월 30일까지 일정한 온도로 유지, 관리하여 무가온구와 가온구의 지상부, 지하부 및 수량을 비교시험한 결과는 다음과 같다 1) 지중가온에 의한 지온확보는 가온구는 15~20 cm에서 22℃ 정도의 평균온도를 확보할 수 있었고, 무가온구는 평균 17~18℃ 정도였다 2) 정식 30일 정도에서 초기생육은 가온구가 초장, 경경, 엽수, 엽면적 등 모두 증가하였으며 특히 초장 27%, 엽수 51%, 엽면적은 150% 정도 증가하였다. 또 지상부 평균 증가율도 관행대비 가온구 증가율이 117% 정도였다. 3) 가온구의 지하부 뿌리의 생장성이 관행구에 비하여 평균 56% 정도 증가하였다 4) 과수의 수량면에서도 총과수가 무가온구 313개, 가온구 614개로 가온구가 196% 정도 증수되었다.
완전제어형 식물공장하에서 인공광원에 따른 결구상추의 생육, 잎끝마름증과 배양액속의 무기이온 변화를 검토하고자 본 실험을 수행하였다. 인공광원에 따른 지상부 생체중과 건물중간의 유의적인 차이는 없었으나 전반적인 생육은 형광등에서 가장 낮게 나타났다. 인공광원중 생육과 램프의 경제성을 고려해 볼때, 고압나트륨등을 사용하는 것이 좋을 것으로 생각된다. 인공광원에 따른 잎끝마름증 발생시기는 정식 후 14일에 처음 발생하였으며, 발생부위는 자엽으로 부터 9∼10번째 잎이었다. 발생원인으로는 빠른 생장율과 상추의 칼륨흡수로 추정되었다. 그리고 인공광원에 따라 배양액속의 무기 성분 변화를 보면, 세처리구 모두 칼슘. 마그네슘, 구리와 아연 함량 등은 축적되는 경향을 보였으며, 전질소, 인, 철과 망간 함량등은 안정적이었다.
순환식 펄라이트 고형배지경에서 토마토의 영양과 환경특성을 고려한 생육단계별 최적 배양액을 개발하고자 일본 야채시험장표준액(야시액)을 2 수준(l/2, 1.0 배액)으로 하여 실험을 하였다. 전반적으로 일본 야시액 1배액에서 생육이 좋았으며 식물체내 무기이온함량도 적정치로 나타났다. 따라서 1배액의 양수분 흡수율에 의해 토마토 순환식 고형배지경용 배양액을 조성 하였고 그것을 SCUT 배양액으로하였다. 생육단계별로 육묘기. 영양생장기 및 결실기로 나누어 양수분 흡수율(n/w)을 계산한 결과, 육묘기에 N 13.5, P 3.3, K 7.0, Ca 7.0 및 Mg 3.5 me.L-1이었고, 영양생장기에는 N 14.2, P 3.3, K8.0, Ca 7.5 및 Mg 4.0 me.L-1, 결실 비대기에는 N 10.0, P 3.0, K 7.0, Ca 6.0, Mg 3.0 me.L-1로 조성하는 것이 적합한 것으로 나타났다. 생육단계별로 조성된 시립대 순환식 토마토 배양액(SCUT)을 네덜란드의 순환식 배양액 (PBG)과 함께 비교실험을 수행한 결과 근권내 pH 와 EC변화는 저농도구인 1/2배액에서 변화가 크게 나타나지 않았다. 근권내 무기이온함략 변화는 시립대액에서는 생육단계별로 조성배양액을 바꾸어 공급하면서 실험한 결과 1/2배액에서 근권내 N, p 함량이 적정수준이하로 나타났고 2배액에서는 근권내 N, K, Ca, Mg 함량이 집적되어 고농도로 되는 경향을 보였다. 반면에 1배액에서는 전반적으로 근권내 무기양분이 적정수준을 유지하고 있었으며 특히 시립대 배양액에서 토마토의 생육, 수량 및 품질이 높게 나타났다.