Recently marine accidents involving floating objects have been continuously increasing due to domestic coastal traffic conditions, and as a result cases of secondary-linked reduction gear damage have also occurred one after another. This research aims to evaluate the ship propulsion system safety through the analysis the effect of the torsional stress generated on the propeller shaft system when a rope or net is wrapped around a propeller at sea through theoretical analysis, simulation analysis, and ship empirical test.
본 연구에서는 온실가스 배출을 감축하기 위해 메탄올을 추진 연료로 사용하는 선박에 수소 연료전지 시스템이 추가된 하 이브리드 시스템 공정을 설계하였다. Case1에서는 메탄올 연료 엔진 시스템을 설계하여, 엔진에 가솔린 대신 메탄올을 연료로 공급했 을 때의 배기가스 배출량을 알아보았다. Case2에서는 Case1에 메탄올 개질 시스템을 추가해, 수소연료전지 시스템을 설계하였다. 이 하 이브리드 시스템에서는 그레이 수소를 생산하며, 엔진과 연료전지의 출력을 조합하여 선박을 구동한다. 하지만 그레이 수소는 수소를 생산하는 과정에서 탄소를 배출한다는 단점이 있다. 이 점을 보안하기 위해 Case3에서는 CCU시스템을 추가하였다. Case2에서 배출한 Flue gas의 이산화탄소를 포집한 후, 그레이 수소와 합성해 블루 메탄올을 생산하였다. 본 연구에서는 Case study를 통해 개질 온도22 0℃, 개질 압력500kPa, SCR은 1.0, flow ratio가 0.7일 때 최적의 운전조건임을 알 수 있었다. Case3의 시스템은 Case1에 비해 탄소 배출량 을 42% 감소시켰다. 결과적으로, Case3의 하이브리드 시스템을 통해 선박의 이산화탄소 배출을 유의미하게 저감할 수 있을 것으로 예 상한다.
국제해사기구에서는 선박에서 배출되는 질소산화물 및 이산화탄소 등에 관한 환경규제를 꾸준하게 강화하고 있다. 이에 친환 경 요소를 바탕으로 하는 전기추진시스템의 수요가 증가하고 다양한 선박에 적용되며 연구개발이 꾸준하게 진행되고 있다. 전기추진시스 템은 신뢰성을 높이고 선내 배치를 용이하게 하기 위한 이중화 구성이 주로 채택되며 실제 장비나 공간을 가상 세계에 쌍둥이처럼 구현 하고 현실 세계의 정보와 데이터를 가상 세계와 통합하여 실제 환경에서 발생할 수 있는 상황을 컴퓨터로 시뮬레이션 함으로써 결과를 미리 예측할 수 있는 디지털트윈 기술의 접목을 통하여 전기추진시스템의 안전성 확보를 위한 연구 또한 매우 활발하게 진행되고 있다. 본 연구에서는 전기추진선박의 디지털트윈 기술개발을 위한 전력관리시스템 이중화에 대한 검증을 FMEA를 바탕으로 분석 후 선급에서 제시하는 이중화 FMEA 기준을 바탕으로 실제 선박 운항 조건에서 전력관리시스템의 단일 장비 고장의 일차 피해와 이차 피해 및 전체 시스템의 영향을 분석하여 추가 피해를 방지하기 위한 보상기능으로 전력관리시스템의 역할과 알고리즘을 제안하였으며 실제 테스트를 통해 추진력 보존이 개선되었음을 검증하였다.
본 연구에서는 CO2 가스 배출 저감 및 선박 폐열 회수 증대를 목적으로 선박 배기로 버려지는 폐열을 전기로 변환하는 ORC(Organic Rankine Cycle) 발전에 대해 시뮬레이션을 통한 냉매별 효율을 보여주고 있다. 상대적으로 고온인 배기가스의 폐열과 상대적으로 저온인 냉각해수를 이용하여 Aspen HYSYS 11을 이용하여 시뮬레이션을 수행하였다. 해수냉각 ORC 발전시스템의 시뮬레이션 결과, 작동유체 효율은 R717 냉매가 2.86 %로 가장 높았고, 다음 순으로 R152a, R134a, R143a, R125a로 나타났다.
본 논문에서는 LNG 추진선박에서 발생하는 BOG(boil-off gas)를 이용하여 수소를 생산하고 수소 연료전지 시스템을 보조엔진으로 적용한 개질공정의 특성에 대한 연구를 수행했다. 연구를 위해 BOG 수증기 개질공정을 UniSim R410 프로그램을 이용해 공정설계하고, 개질기의 출구온도와 압력, SCR(steam carbon ratio)에 따른 생성물의 분율과 반응물의 소모량을 산출하였다. 연구 결과 개질온도가 890℃일 때 메탄의 반응률이 100 %였으며, 최대 수소 생산량을 보였다. 또한 개질압력이 낮을수록 반응 활성도가 높았다. 하지만 그 이상의 온도가 되면 역반응의 우세로 인해 수소의 생산량은 감소하게 되고, 물과 이산화탄소의 양은 증가했다. 또한 SCR이 증가할수록 수소 생산량도 증가했으나 요구되는 에너지 소비량도 비례하여 증가했다. SCR이 1.8일 때 수소분율이 가장 높았으나 코킹방지를 위해 SCR이 3에서 운전하는 것이 최적 운전범위임을 확인했다. 그리고 개질압력이 낮을수록 발생되는 이산화탄소의 양은 증가했으며, 냉각 및 액화를 위해서는 이산화탄소 발생량을 기준으로 42.5 %의 LNG 냉열이 요구됨을 알 수 있었다.
지구온난화 및 대기오염 등 환경문제에 대한 관심이 대두되면서 국제해사기구의 선박 대기오염물질 배출 규제 및 협약이 채택 되었으며, 최근 국내에서는 항만지역 등 대기질의 개선에 관한 특별법안이 제정되어 미세먼지 발생량을 줄이고자 다방면으로 노력하고 있다. 이러한 미세먼지 저감대책의 일환으로 노후화된 연안선박의 디젤엔진을 미세먼지 및 배출가스가 없는 배터리 전기추진시스템으로 전환하는 것에 대한 타당성 조사가 활발히 진행되고 있다. 배터리 전기추진시스템은 연료의 연소로 인한 배기가스의 발생이 없으며, 신재 생에너지원의 적용이 용이하므로 유럽이나 미국과 같은 선진국에서는 수년전부터 신재생에너지를 적용한 배터리 전기추진시스템이 적용 된 소형연안여객선이 운항 중이나 국내에서는 전무하다. 따라서 본 연구에서는 국내 소형연안여객선을 대상선박으로 선정하여 태양광 발 전시스템이 연계된 배터리 전기추진선박의 적용 여부에 대해 시뮬레이션을 하였으며, 그에 따른 결과를 바탕으로 배터리 전기추진선박의 적용가능성을 확인하고자 한다.
최적의 선박 운항 항로를 찾기 위해서는 선박의 정확한 추진성능을 추정하는 것이 매우 중요하다. 본 논문은 선박 최적운항시스템 의 추진성능 데이터베이스를 생성하기 위한 전산프로그램의 개발에 대해 기술하고 있다. 실해역에서의 추진성능은 표류와 표면 거칠기 등 선 체 상태뿐 만 아니라 파랑과 바람 등 해상 상태의 영향을 받는다. 이 부가저항 추정 방법들은 ISO 15016:2002 표준의 실선 속력시운전 해석법 을 근간으로 하고 있으며, 추가로 바람과 선체 표면 거칠기에 대한 몇 가지 추정 방법이 보완되었다. 이 추정 방법들은 종합적인 전산프로그 램으로 만들어졌다. 그리고 향후 최적 운항경로 계산에 활용될 쇄빙연구선 아라온 호에 대해서 데이터베이스 계산이 수행되었다. 이 프로그램 은 모든 선박의 항로 최적화 계산에 유용하게 사용될 수 있을 것으로 판단된다.
본 연구는 선박 추진시스템 설계를 위한 제품정보관리(Product Data Management, PDM) 시스템의 구현 사례를 소개하였다. 객체 지향 모델링 언어(Unified Modeling Language, UML)를 이용하여 중소형 선박 추진성능 추정 시스템을 설계하였으며, 프로펠러의 3차원 디지털 모크업(Digital Mock-Up, DMU)을 중심으로 제품정보를 구축하였다. 또한 설계 과정에 필요한 모델링 및 시뮬레이션(Modeling & Simulation, M&S) 기술을 PDM 시스템과 통합하기 위한 방안을 제안하고, 추진기 및 축계 설계 검증 모델을 동시에 구현하였다. 시스템 개발에는 Open Scene Graph(OSG) 라이브러리 및 객체 지향 시스템 개발 도구를 사용하였다. 최종적으로는, 설계 검증용 M&S 소프트웨어와 PDM 시스템을 연동한 구현 사례를 보임으로써 추진성능 추진 시스템의 개발환경 구축 방안을 제시하였다.