This study was conducted to evaluate the applicability of a carrier media with natural minerals as packing material in a biofilter to remove odor-causing compounds. The carriers were prepared by mixing powdered zeolite, barley stone, and clay. They have a pellet type with a length of 5m m to 10 mm, 3.2 m2/g of a specific surface area, and 0.04 cm3/g of a pore volume. The adsorption capacity and the biodegradation by biomass formation on the media were experimented with toluene and ammonia as the test compounds. The carrier possessed the ability to adsorb toluene and ammonia. The adsorption capacity of toluene and ammonia at the inlet concentration of 100 ppmv was 58 g/g and 96 g/g, respectively. In the biofilter using the carrier as the packing material, the biofilter performances were different depending on the supply of moisture and liquid-nutrient. The critical loading was found to be 33.13 g/m3/hr for toluene removal and 6.5g /m3/hr for ammonia removal even when no nutrients were supplied. The proposed material has been confirmed to be capable of adsorbing inorganic and organic compounds, and can be effectively applied as packing materials for the biofiltration.
지금까지 개발된 대부분의 세라믹 담체의 재료는 크게 알루미나와 실리카의 두 부류로 나누어지는데 소다유리를 원료로 하는 실리카 담체는 800℃ 정도의 온도에서 소결시켜 제조하나, 알루미나 원료의 담체는 1,300℃이상의 고온에서 소결 제조하여 원재료 및 제조비용이 높아 상업적 이용에 있어 경제성이 비교적 낮다는 단점이 있다. 따라서 본 연구개발은 소성을 하지 않고 무소성으로 압축강도가 향상된 세라믹담체를 제조하고 오염물질을 제거할 수 있는 미생물을 담체 제조시에 같이 혼합 제조하여 미생물담체를 제조하는 것이 1차 목표이며 다음으로 담체를 이용하여 수질오염물질을 제거하는 장치를 개발하는 것이다. 세라믹 담체의 원료가 되는 천연재료에 대한 녹조저감성능에 대한 시간대별로 흡착성능실험을 실시하고 이를 통해 녹조저감에 가장 우수한 재료을 선택하여 무소성 미생물 세라믹 담체를 개발 및 제조하였으며 비표면적과 흡수율, 압축강도, 미생물 균밀도에 대한 성능을 검사하였다. 또한, 개발된 세라믹담체의 수처리 효율을 분석하기 위해 Lab scale과 Pilot plant의 규모로 T-N, T-P, Chl-a, BOD 제거효율을 수질오염공정시험기준에 의거하여 분석하였다. 향후 무소성 세라믹 담체의 제조원료로 하수처리장에서 나오는 슬러지 및 다른 폐기물 등을 활용할 경우 폐기물의 재자원화와 생산단가 절감 등의 효과를 얻을 수 있을 것으로 판단된다.
바이오필터는 미생물의 대사작용을 통해 가스상 오염물질을 제거하는 생물학적 공정이다. 생물학적 공정은 친환경적이며, 2차 오염물질이 생기지 않기 때문에 악취가 발생하는 시설에 많이 적용되고 있다. 바이오필터의 운전성능 측면에서 충전담체는 매우 중요한 인자이다. 본 연구는 세라믹 재질의 담체를 Biofilter와 TBAB(Trickle Bed Air Biofilter)에 적용하여 암모니아를 대상으로 제거 특성을 확인하였다. 본 실험의 Biofilter와 TBAB는 995mL의 아크릴 소재로 제작된 반응기를 이용하였다. 세라믹 재질의 담체는 하수슬러지로 접종시킨 후 500mL를 반응기에 충전하여 실험을 실시하였다. 반응기에 유입되는 공기의 유량은 0.8L/min로 주입되었으며, 영양분은 7mL/day와 80mL/day로 Biofilter와 TBAB에 각각 하였다. 암모니아의 초기 농도는 142ppm(9.6g/m³・hr)으로 주입하였으며, 최대 320ppm(21.5g/m³・hr)까지 단계적으로 농도를 상승시켜 임계부하량 및 최대제거성능을 파악하였다. 유입 및 유출되는 암모니아는 인도페놀법을 이용하여 분석을 실시하였다. 바이오필터는 총 70일 동안 운전되었으며, 운전 후 세라믹 담체의 표면 변화를 확인하기 위하여 사용전의 세라믹 담체와 함께 SEM(Scanning electron microscope) 및 EDS(Energy Dispersive X-ray Spectroscopy)를 분석하였다. 본 연구의 실험결과 TBAB와 Biofilter는 운전초기에 불안정한 제거성능을 보였지만 TBAB의 경우 순응기간(15일)을 지난 후 99% 이상의 처리효율을 보여주었으며, Biofilter의 경우 93%의 처리효율이 확인되었다. 단계적으로 암모니아의 유입 농도를 상승시켜 주입한 결과 TBAB는 270ppm(18.1g/m³・hr)까지 98% 이상의 효율이 확인되었으며, 암모니아 농도를 320ppm(21.5g/m³・hr)으로 주입한 결과 처리효율이 94% 수준으로 낮아졌다. Biofilter의 경우 암모니아 농도 270ppm에서 82%의 처리효율이 확인되었으며, 암모니아 농도를 320ppm으로 상승시켜 주입한 결과 처리효율이 71%로 낮아졌다. 단계적인 농도 상승을 통해 세라믹이 충전된 TBAB와 Biofilter의 임계부하량(Critical load) 결과는 각각 13g/m³・hr와 6g/m³・hr이며, 최대제거성능(Elimination capacity)은 21g/m³・hr와 15g/m³・hr로 나타났다. 세라믹 표면을 SEM으로 관찰한 결과 TBAB와 Biofilter에 사용된 세라믹의 표면은 사용 전의 세라믹과 보다 상대적으로 거친 표면이 관찰되었으며, 표면의 성분 변화를 EDS로 확인한 결과 사용 전의 세라믹에서 확인되지 않은 성분인 인(P)이 확인되었다. 인은 미생물이 포함하고 있는 원소로 생물학적 반응기에 사용된 담체 표면에 생물막(Biofilm)이 형성되었기 때문에 세라믹 표면에 인의 성분이 확인되었다고 사료된다.
Wastewater from the pigment industry has high levels of organics and is known as hardly biodegradable. The objective of this study is to evaluate the applicability of aerobic fixed-bed biofilm reactor packed with ceramic support carrier for the pigment wastewater treatment. Orange 2(widely used azo pigment) adsorption experiment onto biofilm and activated sludge, and continuous treatment experiments were performed. In batch adsorption experiment, maximum adsorption quantity of biofilm was at least two times higher than that of activated sludge. In continuous experiment using aerobic fixed-bed biofilm reactor, the influent concentration of COD and Orange 2 were 75∼500㎎/ℓ(0.45∼3.00㎏ COD/㎥.day), 5∼50㎎/ℓ (0.03-0.30㎏ Orange 2/㎥.day), respectively. At a COD loading rate of 2.5㎏ COD/㎥.day and Orange 2 loading rate of 0.18㎏ Orange 2/㎥.day, removal efficiency of COD and Orange 2 were over 95%, 97%, respectively.