PURPOSES : The exposed aggregate concrete pavement (EACP) is adopted to achieve low traffic noise and long-term skid resistance in European countries such as Belgium and Germany. In Korea, it is first introduced at the Myeon Cheon field site in 2010. It reduces 3 dB(A) from tire–pavement noise compared with transverse tining. Recent investigations show that EACP can reduce tire–pavement noise by an additional 5 dB(A) compared with transverse tining. In this study, the tire–pavement interaction noise of EACP is compared with that of conventional pavements such as asphalt pavement, next-generation concrete surfaces (NGCS), and transverse tining. METHODS : EACP is constructed at two field sites on the SOC research center and Yeo-Ju test road to compare the noise level via close proximity noise measurement. In addition, the noise is measured using two vehicle type based on vehicle speeds of 60, 80, and 100 km/h. RESULTS : The results of noise measurement obtained from the SOC research center are as follows: Porous asphalt pavement 92.8 dB(A), HMA 96. dB(A), transverse tining 100.1 dB(A), and 8 mm EACP 97 dB(A) at a driving speed of 80 km/h. For the case of the Yeo-Ju test road. The noise levels at a driving speed of 80 km/h are as follows: 6 mm EACP, 93.6 dB(A); asphalt grooving pavement, 94.72 dB(A); 8 mm EACP, 95.2 dB(A); NGCS, 95.2 dB(A); transverse tining, 104.1 dB(A). CONCLUSIONS : The result of noise measurement of two sites in the SOC research center and test road shows that the noise level of the 6 mm EAC is lower than that of concrete pavement, such as tining and NGCS, and similar to that of asphalt pavement. In addition, the noise level of the 8 mm EAC is similar to that of the NGCS pavement. The noise reduction effect of the EAC is greater when small-sized coarse aggregates with lower flat and elongation ratios are used.
PURPOSES : The exposed aggregate number (EAN) and mean texture depth (MTD) of exposed aggregate concrete pavement (EACP) influence the functional performance of EACP in terms of pavement noise and skid resistance. The selection of the exposure time of EACP is important because the designed EAN and MTD of EACP can be achieved when the exposure process is performed at an appropriate time. On the one hand, too early exposure may cause protrusions and unwanted removal of aggregates and mortar. On the other hand, late exposure may cause difficulty in exposure of the mortar. In this study, a method to determine the optimum exposure time for EACP is suggested using a non-destructive method.
METHODS : A set of laboratory tests was performed to investigate the variation in EAN and MTD of EACP according to the elastic modulus obtained by non-destructive equipment. From the results of this investigation, the optimum exposure time using the non-destructive method and the exposure time window (ETW) method was suggested. In addition, the usefulness of ETW suggested by laboratory tests was verified from a field application.
RESULTS : From the laboratory tests, it was found that the targets of the surface condition of EACP (EAN: 59 per 25 cm2, MTD: 1.39 mm) can be achieved when the concrete elastic modulus is higher than 20GPa. The proposed guideline using the non-destructive method was applied for the field construction of EACP and achieved similar results.
CONCLUSIONS : It was found that the proposed guideline for determining the exposure time window based on non-destructive testing is useful.
PURPOSES : Concrete pavement is excellent in structural performance and durability. However, its functionality – such as noise and skid resistance – is a shortcoming. Functionality such as noise reduction and skid resistance of concrete pavement is affected by the texture surface, and the texture surface is classified according to the length of the wavelength. In recent years, Fine-size exposed aggregate concrete pavement has been applied, which has excellent structural performance and durability, and secures functionalities such as noise reduction and long-term skid resistance by randomly forming texture surface. Fine-size exposed aggregate concrete pavements are constructed by removing the surface cement binder to randomly expose coarse aggregate and their functionality is mainly governed by the surface texture. However, deteriorated concrete by tire-pavement friction and deicing agent may cause abrasion and aggregate loss on the surface texture; thus reducing their functional performances. Abrasion is created by the thin cutoff of aggregate texture under repeated tire-pavement friction. In addition, aggregate loss is defined by the detachment of aggregates from cement binder. This study aims to evaluate the abrasion and aggregate loss of Fine-size exposed aggregate concrete pavement surface texture under tire-pavement friction and scaling tests.
METHODS : In the study, abrasion and aggregate loss of tining and exposed aggregate concrete surface treatments were evaluated. Deterioration of each surface treatment was replicated by scaling test under ASTM C 672 test method. Afterward, abrasion test was conducted by ASTM C779 to simulate the tire-pavement friction under traffic. Consequently, abrasion and aggregate loss were measured.
RESULTS : Abrasion depth of non-scaling tining, 10-mm EACP, and 8-mm EACP was 1.76, 1.12, and 1.01mm, respectively. Compared to scaling surface treatments, the difference of abrasion depth in tining texture was the largest with value of 0.4mm. For both textures of finesize exposed aggregate concrete, abrasion depth difference was about 0.1mm. Moreover, The 10-mm EACP exhibited a 2.6% of aggregate loss rate caused by tire-pavement friction before conducting concrete deterioration test. After 40-cycle scaling test, aggregate loss increased up to 12.2%. For 8-mm EACP, aggregate loss rate was 1.7% on non-scaling concrete. Further, this rate was magnified up to 7.3% for the 40-cycle scaling concrete.
CONCLUSIONS : Under non-scaling or scaling tests, fine-size exposed aggregate concrete pavement showed better abrasion resistance than tining texture since tining was formed by aggregates and cement binder. Additionally, rate of aggregate loss was significant when EACP experienced the deicing agent under numerous cycles of freeze-thaw action.
PURPOSES: The noise problem in concrete pavements has an adverse effect to the road user or nearby residents and is generated by the contact between a tire and the pavement surface. Exposed aggregate concrete pavements have been adopted to solve the tire-pavement noise problem in the United States and Europe. However, the efficiency of the coagulation retarder and exposure equipment used for this kind of pavement has not yet been investigated. Therefore, this study aims to evaluate the ability of the coagulation retarder and exposure equipment in producing the optimum exposed aggregate texture to achieve low pavement noise. A method for the exposure time selection has also been introduced here.
METHODS: Sodium gluconate retarders were selected for use in this study. The retarder-water ratios of 1:1, 1:2, and 1:3 were investigated. The retarder was sprayed on a fresh concrete surface with rates of 200 g/m2, 300 g/m2, and 400 g/m2. The aggregates were then exposed to the surface using a steel brush and a water jet. The efficiencies for the low-noise texture, workability, and environmental impact produced by the two exposure devices were estimated. The EAN and the MTD were investigated according to the exposure time.
RESULTS : The aggregates were exposed after the retarder was sprayed on the fresh concrete surface; the exposure lasted for 18 h to 26 h each time. The retarder-water ratio of 1:2 and the spraying rate of 300 g/m2 produced an optimum surface texture for low noise. Additionally, the steel brush performed more effectively in exposing aggregate to the surface compared to the water jet. The selected exposure time window (ETW) was 28 h to 35 h.
CONCLUSIONS : The optimum retarder was the sodium gluconate retarder with a retarder-water ratio of 1:2 and a spraying rate of 300 g/m2. The steel brush showed a good performance in exposing the aggregates and showing the efficiency of the coagulation retarder in the given environment so as to produce the quality control condition. The ETW was influenced by the construction, mixture design, and construction environment; however, the selected ETW in this study was 26 h~35 h.
PURPOSES : In many European countries, the fine-size exposed aggregate concrete pavement (EACP) technique has been adopted for a quiet pavement. However, different noise reduction levels were reported based on the mixture design and texture conditions. This study aims to suggest a quality control condition for achieving low-noise texture and a mixture design procedure for exposed aggregate concrete overlay (EACO), which will provide the optimum mixture of the surface texture that can reduce the tire-pavement noise.
METHODS : The tire-pavement noise is highly influenced by the pavement surface texture. The surface texture of the EACP can be quantified by the mean texture depth (MTD) and the exposed aggregate number (EAN). The optimum condition for the low-noise texture of the EACP was investigated herein based on the analysis of the review of the texture conditions and noise measurement in many EACP sites.
RESULTS : The MTD and EAN criteria can be derived according to the investigated relationship between noise and texture condition. The optimum mixture design to satisfy these criteria can be achieved by controlling the maximum size of the coarse aggregate and the S/a.
CONCLUSIONS: This study aimed to suggest a quality control condition for achieving low-noise texture and an optimum mixture design for EACO. As a result, we found that the early traffic opening of EACO can be achieved by using high early-strength cement.
PURPOSES : In Korea, asphalt overlay has been used as a typical alternative rehabilitation method for deteriorated pavements. However, asphalt overlay has problems due to poor bonding of the asphalt overlay and the old concrete. Recently, concrete overlays, which have advantages such as long-term durability and high structural capacity to carry heavy traffic, have been considered for rehabilitation construction. However, concrete overlays have limitations such as difficulty in opening to traffic and pavement noise. Recently, an appropriate fine-size exposed aggregate concrete pavement technique was reported to solve these problems. Therefore, this study aims to suggest an optimum mixture design of fine-size exposed aggregate concrete overlay (EACO) that can ensure low noise and early strength.
METHODS : The optimum mixture design of fine-size EACO is determined to ensure adequate structural performance for early traffic opening and good functional performances such as low noise. Therefore, the optimum mixture proportion is determined based on the optimum design of aggregate content to produce a low-noise pavement texture by controlling the exposed aggregate number (EAN) and mean texture depth (MTD).
RESULTS : The water-cement ratio and unit cement ratio were used to determine the mixture designs to achieve workability and adequate strength for early traffic opening. The texture was determined by selecting the maximum size of coarse aggregate smaller than 10 mm with an S/a ratio of less than 30% for low noise. With these mixture proportions, the EAN and MTD were 50±5 / 25cm2 and 1.0±0.2 mm. Respectively, which meet the criteria for EACO.
CONCLUSIONS: In this study, an optimum mixture design of EACO for early traffic opening and low noise is suggested by using earlyhigh strength cement, and the pavement texture is implemented considering EAN and MTD. In addition, a pavement surface texture criterion is suggested for the quality control of EACO.
PURPOSES : Exposed aggregate concrete pavements have been adopted in several countries because of their advantages of pavement texture characteristics, which can produce low tire-pavement noise and higher load-carrying capacities. The magnitude of tire-pavement noise greatly depends on the wavelength of pavement texture. The wavelength of exposed aggregate concrete pavement can be controlled with maximum sizing and by controlling the amount of coarse aggregates in the concrete mixture. In this study, the maximum size and the amount of coarse aggregate in the exposed aggregate concrete pavement are investigated to produce equal levels of wavelength in the asphalt pavement.
METHODS: A simple method to measure the average wavelength of pavement texture is introduced. Subsequently, the average wavelength of typical asphalt pavement is investigated. A set of mixture designs of exposed aggregate concrete with three maximum-sized coarse aggregates, and three amounts of coarse aggregate are used. The average wavelengths are measured to find the mixture design needed to produce equal levels of wavelength as typical asphalt pavement.
RESULTS : With a cement content of 420 kg/m3 and fine aggregate modulus of 30%, the number of exposed aggregates was 48, and the shortest texture depth provided a wavelength of 4.2 mm. According to the number of exposed aggregates, the exposed aggregate concrete pavement could be rendered low-noise, because its wavelength was similar to that of asphalt pavement ranging from 3.9 to 4.4 mm.
CONCLUSIONS : Selection of appropriate maximum sizes and the amount of coarse aggregates for exposed aggregate concrete pavement can produce a wavelength texture closely resembling that of asphalt pavement. Therefore, the noise level of exposed aggregate concrete pavement can be reduced with an appropriate maximum size and the amount of coarse aggregates are employed.
PURPOSES : In Korea, concrete pavements with transverse tining, which have excellent skid resistance, have been mainly constructed to secure road bearing capacity and safety. However, transverse tining has higher noise level of approximately 4-5 dB(A) compared with asphalt pavement. As a method to determine low-noise characteristics of concrete pavements, the fine-size exposed aggregate concrete pavement (EACP) has been studied in Korea and abroad. The surface of EACPs consists of exposed coarse aggregates and 2-3 mm removal surface mortar. EACPs have the advantages of maintaining low-noise and adequate skid-resistance levels during the performance period. Although EACPs have been widely studied to reduce noise, quantitative noise analysis with various paving methods has not been performed owing to differences in mixture proportioning, construction conditions, environmental conditions, and measurement methods. Therefore, the purpose of this study is to investigate the low-noise characteristics of fine-size EACPs by comparing noise with various paving methods, including concrete and asphalt pavements.
METHODS: In this study, noise data were collected to quantitatively analyze the low-noise characteristics of EACPs compared with various paving methods such as transverse tining, longitudinal tining, SMA, and HMA.
RESULTS: The evaluation of the low-noise characteristics of EACPs compared with transverse tining showed that the relative noise of 13 mm EACP with transverse tining was reduced by approximately 2% at 60 km/h, 4% at 80 km/h, and 5% at 100 km/h. The relative noise of 10 mm EACP with transverse tining was reduced to 3%, 7%, and 8% at 50 km/h, 80 km/h, and 100 km/h, respectively. In addition, it was confirmed that the noise of 10 mm EACP was similar to that of asphalt pavement.
CONCLUSIONS : It was confirmed that EACP using 10 mm coarse aggregates generates lower noise than that using 13 mm coarse aggregates. Therefore, the use of coarse aggregates smaller than 10 mm needs to be considered to improve the low-noise effect of EACP.
소입경 골재노출콘크리트포장은 콘크리트 포장 시공 시 포장표면에 적정 응결지연제를 분사한 후 표면 모르타르를 제거하여 굵은 골재를 노출시킴으로서 표면조직을 형성하는 공법으로써 기존 콘크리트 포장의 소음문제를 해결할 수 있는 저소음 공법이다. 소입경 골재노출 콘크리트 포장은 강도를 크게 개선할 뿐만 아니라 소음저감 효과 및 우수한 미끄럼 저항성을 확보하여 도로이용자의 안정성을 확보할 수 있는 공법이다. 현재 국외 도로 선진국의 경우 골재노출 포장의 상용화가 이루어진 상태이지만 국내의 경우는 실용화 초기단계이기 때문에 현장적용을 위해서는 국내 여건에 맞는 합리적인 관리 기준이 필요하다. 이를 위하여 소입경 골재노출 콘크리트 포장의 최적배합 및 노출기법 연구, 굵은 골재의 선정 및 입도 설계, 환경하중 저항성 평가 등 실내시험을 수행하였으며, 소입경 골재노출 콘크리트 포장의 시공을 위한 시공 장비를 제작하였다. 따라서 본 연구에서는 시험시공을 통해 도출된 결과와 기존 실내시험에서 도출된 결과를 비교 분석하였으며, 시험시공 분석을 통하여 골재 탈리 방지, 강도 및 내구성 확보를 위한 표준배합을 제시하였다. 환경 및 시공조건이 상이한 3차례 시험시공 구간을 선정하여 시공현장여건에 유동성으로 대처할 수 있는 시공 기술 및 시공 기준을 제시하였다. 또한 장 단기 공용성 평가를 통하여 도로 포장의 기능성 측면에서 우수한 소음저감 및 미끄럼 저항성을 확보할 수 있는 노면조직의 품질관리 기준을 제시하였다.
소입경 골재노출 콘크리트포장은 콘크리트 타설 직후 포장표면에 응결지연제를 살포하여 표면으로부터 2~3mm 정도의 모르타르 경화를 늦추게 한 후 표면의 모르타르 제거를 통해 굵은 골재를 포장표면에 노출시키는 공법이다. 소입경 골재노출 콘크리트포장의 타이어-노면 소음은 일반 콘크리트포장보다 작으면서도 적정한 미끄럼저항을 장기간 유지한다는 장점을 가지고 있다. 성공적인 소입경 골재노출 콘크리트포장의 건설을 위해서는 굵은골재의 최대입경이 적정하여야 하며 적정량의 굵은골재를 포장표면에 균일하게 노출하도록 해야 하기 때문에 이를 위한 적절한 배합과 노출기법의 도출이 요구된다. 본 연구에서는 소입경 골재노출 콘크리트포장의 시험시공을 실시하여 초기 공용성을 평가하였으며, 이를 통하여 적정 강도, 저소음 및 적정 미끄럼저항을 확보함을 확인하였다.
소입경 골재노출콘크리트포장은 콘크리트 타설 직후 포장표면에 응결지연제를 살포하여 표면으로부터 깊이 2~3mm 정도의 모르타르 경화를 늦추게 한 후 표면의 모르타르 제거를 통해 굵은골재를 포장표면에 노출시키는 공법이다. 소입경 골재노출콘크리트포장은 타이어-노면 소음이 일반 콘크리트포장보다 4~5dB(A)정도 작으면서도 적정한 미끄럼저항을 장기간 유지한다는 장점을 가지고 있다. 소입경 골재노출콘크리트포장이 적정 평균조직깊이, 노출도 및 미끄럼저항을 확보하여 강도, 소음저감효과 및 장기간 적정 미끄럼저항성을 유지 하는 것도 중요하지만 성공적인 소입경 골재노출콘크리트포장의 건설을 위해서는 온도, 습도 등의 요인으로 발생하는 환경하중에 대한 내구성이 요구된다. 콘크리트포장은 타설 후 경화과정에서 수분손실 및 초기건조로 인하여 필연적으로 체적변화가수반되며 과도한 체적변화는 콘크리트 균열발생에 주요한 원인이 될 수 있다. 동결융해를 받고 있는 지역에서 제설제를 사용할 경우 표면박리현상이 발생한다. 이러한 균열 및 스케일링은 포장체의 내구성을 저하시키고 미끄럼저항을 감소시켜 장기공용성을 단축시키는 직접적인 요인으로 작용하게 된다. 따라서 본 연구에서는 소입경 골재노출콘크리트포장에 대하여 수분증발로 인한 수축균열 제어 성능 및 제설제를 사용하였을 경우에 반복되는 동결융해작용으로 인한 스켈링에 대해 내구성을 평가하여 환경하중 저항성에 대해 고찰하였다.
골재노출콘크리트포장은 콘크리트 타설 직후 포장표면에 응결지연제를 살포하여 표면으로부터 깊이 2~3mm 정도의 모르타르 경화를 늦추게 한 후 표면의 모르타르 제거를 통해 굵은골재를 포장표면에 노출시키는 공법이다. 골재노출콘크리트포장의 타이어-노면 소음이 일반 콘크리트포장보다 작으면서도 적정한 미끄럼저항을 장기간 유지한다는 장점을 가지고 있다. 특히 굵은골재가 소입경일수록 소음저감효과가 우수한 것으로 알려져 있다. 성공적인 소입경 골재노출콘크리트포장의 건설을 위해서는 굵은골재의 최대입경이 적정하여야 하며, 적정량의 굵은골재를 포장표면에 균일하게 노출하도록 해야 하며 이를 위한 적절한 배합과 노출기법의 도출이 요구된다. 일반적인 콘크리트포장의 배합기준은 강도설계로 이루어지지만 소입경 골재노출콘크리트포장의 경우 강도뿐만 아니라 소음저감효과, 미끄럼저항을 적절히 발현시킬 수 있는 배합설계를 실시하기 위해서는 강도실험 외에도 노면의 미끄럼저항, 소음을 고려할 필요가 있다. 본 연구에서는 소입경 골재노출콘크리트포장에 대하여 적정 강도를 유지하며 포장표면조직의 소음 저감효과 및 적정 미끄럼저항성을 동시에 만족시킬 수 있도록 표면조직을 형성할 수 있는 최적배합에 대해 제시하였다. 또한 콘크리트포장은 온도, 습도 및 대기환경에 의해 모르타르의 경화속도가 달라지므로 콘크리트의 물리적 성질을 정량적으로 고려한 최적 노출기법이 제시되었다.