This study was conducted to investigate the optimal artificial insemination (AI) time with diagnostic kit at ovulation time. We already applied the patent about the protein in the cow heat mucose in external reproductive tract. And we would examine the accuracy for detection of cow heat by the kit produced with the protein. Evaluation of optimal heat detection was tried two time at 12 hrs and 24 hrs after the heat. And then, AI service also performed two times with no relation to the results of heat diagnosis by heat detection kit and pregnancy rates were checked with rectal palpation on 60th day after AI. Heat diagnostic results by kit in natural heat after 12 hrs in Hanwoo cows were showed 31.3~75.0% on positive in first heat detection and 33.3~100.0% on positve in second heat detection. In the 1st positive results were significant different (p<0.05), but 2nd positive were not. The results of heat detection showed different result on regional influence and individual cow effects. The pregnancy rates of first trial of heat detection were showed 34.4~78.7% on positive and 21.3~68.8% on negative after the diagnosis by heat detection kit. And the pregnancy rates of next trial of heat detection were showed 33.3~85.7% on positive and 14.3~66.6% on negative after the heat diagnosis. Both positive results of first trial and next trial also were showed significant different (p<0.05), but negative results were not. In positive result, first trial of total pregnancy rates was higher than the next trial of pregnancy, but there showed opposite results on negative results. In conclusion, the optimal heat detection kit is suitable to ordinary Hanwoo cows and it suggested that we have to improve the kit’s accuracy by detecting the materials like proteins related optimal AI time.
The aim of the present study was to evaluate and estimate timing of artificial insemination (AI) in Hanwoo heifer (Korean native cattle) that is the most popular breed of beef cattle in Korea. To determine changes in body weight of heifers around AI, body weight were measured at different stages either before or after AI. We found that daily body weight gain was higher in the pregnant cows after AI. We also investigate correlation between body mass measured by shoulder height and body length, and conception rates, used (body length+ height)2 instead of height2 for body mass index (BMI), and found that relatively more BMI heifers (>55) showed higher conception rates. Finally, we estimated body weight by measuring should height (SH), heart girth (HG), and body length (BL); BW=3.93372*HG-2.90985*SH-0.021*BL. In addition, we observed that HG is most closely correlated with BW; y(BW) = 1.77355*x(HG), R² = 0.98881. In summary, we can determine the best timing of AI using body measurement and its application including BMI.