This study deals with the application of an artificial neural network (ANN) model to predict power consumption for utilizing seawater source heat pumps of recirculating aquaculture system. An integrated dynamic simulation model was constructed using the TRNSYS program to obtain input and output data for the ANN model to predict the power consumption of the recirculating aquaculture system with a heat pump system. Data obtained from the TRNSYS program were analyzed using linear regression, and converted into optimal data necessary for the ANN model through normalization. To optimize the ANN-based power consumption prediction model, the hyper parameters of ANN were determined using the Bayesian optimization. ANN simulation results showed that ANN models with optimized hyper parameters exhibited acceptably high predictive accuracy conforming to ASHRAE standards.
본 논문에서는 소형어선의 운동 응답을 예측하기 위해 딥러닝 모델을 구축하였다. 크기가 다른 두 소형어선을 대상으로 유체 동역학 성능을 평가하여 데이터세트를 확보하였다. 딥러닝 모델은 순환 신경망 기법의 하나인 장단기 메모리 기법(LSTM, Long Short-Term Memory)을 사용하였다. 딥러닝 모델의 입력 데이터는 6 자유도 운동 및 파고의 시계열 데이터를 사용하였으며, 출력 라벨로는 6 자유도 운동의 시계열 데이터로 선정하였다. 최적 LSTM 모델 구축을 위해 hyperparameter 및 입력창 길이의 영향을 평가하였다. 구축된 LSTM 모 델을 통해 입사파 방향에 따른 시계열 운동 응답을 예측하였다. 예측된 시계열 운동 응답은 해석 결과와 전반적으로 잘 일치함을 확인 할 수 있었다. 시계열의 길이가 길어짐에 따라서 예측값과 해석 결과의 차이가 발생하는데, 이는 장기 데이터에 따른 훈련 영향도가 감 소 됨에 따라 나타난 것으로 확인할 수 있다. 전체 예측 데이터의 오차는 약 85% 이상의 데이터가 10% 이내의 오차를 보였으며, 소형어 선의 시계열 운동 응답을 잘 예측함을 확인하였다. 구축된 LSTM 모델은 소형어선의 모니터링 및 경보 시스템에 활용될 수 있을 것으로 기대한다.
Recently, deep learning that is the most popular and effective class of machine learning algorithms is widely applied to various industrial areas. A number of research on various topics about structural engineering was performed by using artificial neural networks, such as structural design optimization, vibration control and system identification etc. When nonlinear semi-active structural control devices are applied to building structure, a lot of computational effort is required to predict dynamic structural responses of finite element method (FEM) model for development of control algorithm. To solve this problem, an artificial neural network model was developed in this study. Among various deep learning algorithms, a recurrent neural network (RNN) was used to make the time history response prediction model. An RNN can retain state from one iteration to the next by using its own output as input for the next step. An eleven-story building structure with semi-active tuned mass damper (TMD) was used as an example structure. The semi-active TMD was composed of magnetorheological damper. Five historical earthquakes and five artificial ground motions were used as ground excitations for training of an RNN model. Another artificial ground motion that was not used for training was used for verification of the developed RNN model. Parametric studies on various hyper-parameters including number of hidden layers, sequence length, number of LSTM cells, etc. After appropriate training iteration of the RNN model with proper hyper-parameters, the RNN model for prediction of seismic responses of the building structure with semi-active TMD was developed. The developed RNN model can effectively provide very accurate seismic responses compared to the FEM model.
In this paper, we propose an Elman recurrent neural network to predict and analyze a time series of gas energy consumption in an air handling unit. To this end, we consider the volatility of the time series and demonstrate that there exists a correlation in the time series of the volatilities, which suggests that the gas consumption time series contain a non-negligible amount of the non-linear correlation. Based on this finding, we adopt the Elman recurrent neural network as the model for the prediction of the gas consumption. As the simplest form of the recurrent network, the Elman network is designed to learn sequential or time-varying pattern and could predict learned series of values. The Elman network has a layer of “context units” in addition to a standard feedforward network. By adjusting two parameters in the model and performing the cross validation, we demonstrated that the proposed model predicts the gas consumption with the relative errors and the average errors in the range of 2%~5% and 3kWh~8kWh, respectively. The results of this study can be used to the energy management system in terms of the effective control of the cross usage of the electric and the gas energies.
In this paper, we propose an Elman recurrent neural network to predict and analyze a time series of power energy consumption. To this end, we consider the volatility of the time series and apply the sample variance and the detrended fluctuation analyses to the volatilities. We demonstrate that there exists a correlation in the time series of the volatilities, which suggests that the power consumption time series contain a non-negligible amount of the non-linear correlation. Based on this finding, we adopt the Elman recurrent neural network as the model for the prediction of the power consumption. As the simplest form of the recurrent network, the Elman network is designed to learn sequential or time-varying pattern and could predict learned series of values. The Elman network has a layer of “context units” in addition to a standard feedforward network. By adjusting two parameters in the model and performing the cross validation, we demonstrated that the proposed model predicts the power consumption with the relative errors and the average errors in the range of 2%~5% and 3kWh~8kWh, respectively. To further confirm the experimental results, we performed two types of the cross validations designed for the time series data. We also support the validity of the model by analyzing the multi-step forecasting. We found that the prediction errors tend to be saturated although they increase as the prediction time step increases. The results of this study can be used to the energy management system in terms of the effective control of the cross usage of the electric and the gas energies.
This research is a case study of underwater object tracking based on real-time recurrent regression networks (Re3). Re3 has the concept of generic object tracking. Because of these characteristics, it is very effective to apply this model to unclear underwater sonar images. The model also an pursues object tracking method, thus it solves the problem of calculating load that may be limited when object detection models are used, unlike the tracking models. The model is also highly intuitive, so it has excellent continuity of tracking even if the object being tracked temporarily becomes partially occluded or faded. There are 4 types of the dataset using multi-beam sonar images: including (a) dummy object floated at the testbed; (b) dummy object settled at the bottom of the sea; (c) tire object settled at the bottom of the testbed; (d) multi-objects settled at the bottom of the testbed. For this study, the experiments were conducted to obtain underwater sonar images from the sea and underwater testbed, and the validity of using noisy underwater sonar images was tested to be able to track objects robustly.
Ensemble verification and prediction of low-level wind shear (LLWS) are an important matter for airplane landing and management. In this study, we compared the prediction performance of LLWS forecasts of ensemble mean, multiple regression model and long short-term memory (LSTM), which belong to the family of recurrent neural network based on the grid points over the Jeju area. The prediction skills of methods were compared by mean absolute error. We found that the prediction skills of forecasts of LSTM were better than the bias-corrected forecasts in terms of deterministic prediction.
In this study, experiments were conducted for the maintenance, repair and management. The compressive strength of recycled concrete was estimated by using the ultrasonic pulse velocity for performance evaluation and state evaluation of the structure. In order to improve reliability of the results, the algorithm was implemented by using the artificial neural networks.