검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 8

        1.
        2021.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        기술 트렌드가 증가함에 따라, 엄청난 양의 데이터가 생성되고 있습니다. 많은 양의 데이터가 소비되는 기술 분야 중 하나는 컴퓨터 비전이다. 인간은 기계와 비교할 때 시각에 영향을 미치는 표정, 조명 또는 시야각과 같은 외부 조건에서도 얼굴이나 사물을 쉽게 감지하고 인식할 수 있다. 그 이유는 그것과 관련된 높은 차원 의 데이터 때문이다. 데이터 차원성은 모든 관측치에서 측정되는 변수의 총 수를 말합니다. 이번 사업은 안 면인식시스템에 적합한 다양한 차원감소 기법을 비교하고 조도가 다양한 안면이미지로 구성된 다양한 데이 터세트로 테스트해 모델의 정확도 향상에 도움이 되는 기법의 앙상블 모델을 제안하고 성능을 측정하는 것 이 목적이다.렉스 배경과 표현. 제안된 앙상블 모델은 주성분 분석(PCA)과 로컬 선형 임베딩(LLE)이라는 두 가지 차원 감소 기술의 혼합에서 벡터를 추출하고, 이를 밀도 높은 컨볼루션 신경망(CNN)을 통해 전달하여 야생 면(LFW) 데이터 세트의 얼굴을 예측한다. 이 모형은 0.95의 검정 정확도와 0.94의 검정 F1 점수로 수행 됩니다. 제안된 시스템은 시스템이 얼굴을 예측할 수 있는 제안된 앙상블 모델과 통합된 웹캠에서 라이브 비 디오 스트림을 캡처하는 플라스크를 사용하여 개발된 웹 앱을 포함한다.
        4,600원
        2.
        2020.11 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This paper proposes an outlier detection model based on machine learning that can diagnose the presence or absence of major engine parts through unsupervised learning analysis of main engine big data of a ship. Engine big data of the ship was collected for more than seven months, and expert knowledge and correlation analysis were performed to select features that are closely related to the operation of the main engine. For unsupervised learning analysis, ensemble model wherein many predictive models are strategically combined to increase the model performance, is used for anomaly detection. As a result, the proposed model successfully detected the anomalous engine status from the normal status. To validate our approach, clustering analysis was conducted to find out the different patterns of anomalies the anomalous point. By examining distribution of each cluster, we could successfully find the patterns of anomalies.
        4,200원
        3.
        2019.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this paper, the characteristic of intrinsic mode function(IMF) and its orthogonalization of ensemble empirical mode decomposition(EEMD), which is often used in the analysis of the non-linear or non-stationary signal, has been studied. In the decomposition process, the orthogonal IMF of EEMD was obtained by applying the Gram-Schmidt(G-S) orthogonalization method, and was compared with the IMF of orthogonal EMD(OEMD). Two signals for comparison analysis are adopted as the analytical test function and El Centro seismic wave. These target signals were compared by calculating the index of orthogonality(IO) and the spectral energy of the IMF. As a result of the analysis, an IMF with a high IO was obtained by GSO method, and the orthogonal EEMD using white noise was decomposed into orthogonal IMF with energy closer to the original signal than conventional OEMD.
        4,000원
        4.
        2016.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Ensemble classification involves combining individually trained classifiers to yield more accurate prediction, compared with individual models. Ensemble techniques are very useful for improving the generalization ability of classifiers. The random subspace ensemble technique is a simple but effective method for constructing ensemble classifiers; it involves randomly drawing some of the features from each classifier in the ensemble. The instance selection technique involves selecting critical instances while deleting and removing irrelevant and noisy instances from the original dataset. The instance selection and random subspace methods are both well known in the field of data mining and have proven to be very effective in many applications. However, few studies have focused on integrating the instance selection and random subspace methods. Therefore, this study proposed a new hybrid ensemble model that integrates instance selection and random subspace techniques using genetic algorithms (GAs) to improve the performance of a random subspace ensemble model. GAs are used to select optimal (or near optimal) instances, which are used as input data for the random subspace ensemble model. The proposed model was applied to both Kaggle credit data and corporate credit data, and the results were compared with those of other models to investigate performance in terms of classification accuracy, levels of diversity, and average classification rates of base classifiers in the ensemble. The experimental results demonstrated that the proposed model outperformed other models including the single model, the instance selection model, and the original random subspace ensemble model.
        4,200원
        5.
        2018.11 KCI 등재 서비스 종료(열람 제한)
        본 연구에서는 ANFIS 기반 GloSea5 앙상블 기상전망 개선 기법을 개발하고 평가하였다. 대상유역은 국내 주요 다목적댐인 충주댐 유역을 선정하였으며, 개선 기법은 ANFIS 기반의 전·후처리기법으로 구성된다. 전처리 기법에서 GloSea5의 앙상블 멤버에 가중치를 부여하며(OWM), 후처리 과정에서는 전처리결과를 편의보정 한다(MOS). 평가결과 편의보정된 GloSea5에 비해 예측성능이 개선되었으며, CASE3, CASE1, CASE2 순으로 모의성능이 우수하였다. 전처리 기법은 강수의 변동성이 큰 계절에 개선효과가 우수하였으며, 후처리 기법은 전처리로 개선하지 못한 오차를 줄일 수 있는 것으로 나타났다. 따라서 본 연구에서 개발한 ANFIS 기반 GloSea5 앙상블 기상전망 개선 기법은 전·후처리 기법을 함께 사용하는 것이 가장 좋으며, 특히 여름철과 같이 강수의 변동성이 큰 계절에 활용성이 높을 것으로 판단된다.
        6.
        2018.06 KCI 등재 서비스 종료(열람 제한)
        본 연구에서는 충주댐 유역에 대해 앙상블 유량예측기법의 강우-유출 모델 매개변수, 입력자료에 따른 불확실성 분석을 수행하였다. 앙상블 유량예측기법으로는 ESP (Ensemble Streamflow Prediction) 기법과 BAYES-ESP (Bayesian-ESP) 기법을 활용하였으며, 강우-유출 모델로는 ABCD를 활용하였다. 모델 매개변수에 따른 불확실성 분석은 GLUE (Generalized Likelihood Uncertainty Estimation) 기법을 적용하였으며, 입력자료에 따른 불확실성 분석은 유량예측 앙상블에 활용되는 기상시나리오의 기간에 따라 수행하였다. 연구결과 앙상블 유량예측 기법은 입력자료 보다 모델 매개변수의 영향을 크게 받았으며, 20년 이상의 관측 기상자료가 확보되었을 때 활용하는 것이 적절하였다. 또한 BAYES-ESP는 ESP에 비해 불확실성을 감소시킬 수 있는 것으로 나타났다. 본 연구는 불확실성 분석을 통해 앙상블 유량예측기법의 특징을 규명하고 오차의 원인을 분석하였다는 점에서 가치가 있다고 판단된다.
        7.
        2018.03 KCI 등재 서비스 종료(열람 제한)
        최근 기후변화로 인한 국지성 호우 및 태풍 피해가 자주 발생하고 있다. 이와 같은 피해를 저감하기 위해서는 정확한 강우의 예측과 홍수량 산정이 필요하다. 그러나 지점 및 레이더 강우 시 ․ 공간적 오차를 포함하고 있고, 유출 모형에 의한 유출수문곡선 역시 보정을 실시하더라도 관측유량과 오차를 가지고 있어 불확실성이 존재한다. 따라서 본 연구에서는 확률론적 강우 앙상블을 생성하여 강우의 불확실성을 확인하였다. 또한 유출 결과를 통해 수문 모형의 불확실성을 확인하였고, 블랜딩 기법을 이용하여 하나의 통합된 유출 수문곡선을 제시하였다. 생성된 강우앙상블은 강우강도 및 지형적인 영향으로 레이더가 과소 관측이 될 때, 강우 앙상블의 불확실성이 큰 것을 확인하였고, 블랜딩 기법을 적용하여 산정된 최적 유출 수문곡선은 유출모형의 불확실성을 크게 줄이는 것으로 나타났다. 본 연구 결과를 활용한다면, 정확한 홍수량 산정 및 예측을 통해 집중호우로 인한 피해를 줄일 수 있을 것으로 판단된다.
        8.
        2015.02 서비스 종료(열람 제한)
        기후변화 모델을 통해 미래 전망에 대한 연구를 수행하는 것은 다양한 분야에서의 적응과 대응 전략을 수립하고 이상기후에 대한 영향을 최소화하고자 하는데 그 목적이 있다. 본 연구에서는 총 20개의 기후변화 모델 자료(1981∼2100년)를 수집하였으며 미래 시나리오는 RCP 4.5와 8.5시나리오를 사용하였다. 한강유역을 대상으로 지역오차보정을 통해 지역적인 스케일의 불일치를 개선하고 특히, 미래 시나리오에 대해서는 비정상성 분위사상법을 통해 미래 시나리오의 추세가 왜곡되지 않도록 하는 NSQM기법을 제안하였다. 베이지안 모델 평균기법(BMA)을 적용하여 각 관측소별로 가중치가 높은 모델만을 선별한 최적의 모델 조합을 통해 강우자료의 정확성과 신뢰도를 확보하였다. 베이지안 앙상블 강우의 R2=0.54, NSE=0.53, RMSE=90.49 mm로 단일모델에 비해 상대적으로 개선된 결과를 나타내었다. 미래 시나리오에 대한 전망결과 온실가스 배출농도가 높은 RCP 8.5 시나리오의 증가율이 RCP 4.5 시나리오에 비해 더 크게 나타났다. 또한 극치수문사상분석을 위해 GEV Scaling과 SPI가뭄지수를 이용한 홍수 및 가뭄의 IDF와 SDF곡선을 전망하였다. 확률강우량 산정 결과 관측기간의 500년 빈도, 지속시간 10분에 해당되는 강우강도가 224.1 mm/hr인 것에 비하여 RCP 4.5, RCP 8.5 시나리오 각각 279.8 mm/hr, 299.7 mm/hr로 기준 시나리오에 비해 증가하는 전망 결과를 나타냈다. 가뭄의 경우, 한강유역은 가뭄에 대한 민감도가 낮은 것으로 전망되었다. 본 연구를 통해 불확실성을 줄이고 다양한 통계적인 분석결과를 제시함으로써 극치수문사상의 전망이 가능하였다. 이를 통해 수자원 변동성과 취약성을 파악하고 수자원 계획 및 운영을 위한 정보 제공에 도움을 줄 것으로 판단된다.