This study aims to empirically analyze the relationship between climate change elements and catch amount of coastal fisheries, which is predicted to be vulnerable to climate change since its business scale is too small and fishing ground is limited. Using panel data from 1974 to 2013 by region, we tested the relationship between the sea temperature, salinity and the coastal fisheries production. A spatial panel model was applied in order to reflect the spatial dependence of the ocean. The results indicated that while the upper(0-20m) sea temperature and salinity have no significant influence on the coastal fisheries production, the lower(30-50m) sea temperature has significant positive effects on it and, by extension, on the neighboring areas’s production. Therefore, with sea temperature forecast data derived from climate change scenarios, it is expected that these results can be used to assess the future vulnerability to the climate change.
To predict annual energy production (AEP) accurately in the wind farm where located in Seongsan, Jeju Island, Equivalent wind speed (EQ) which can consider vertical wind shear well than Hub height wind speed (HB) is calculated. AEP is produced by CFD model WindSim from National wind resource map. EQ shows a tendency to be underestimated about 2.7% (0.21 m/s) than HB. The difference becomes to be large at nighttime when wind shear is large. EQ can be also affected by atmospheric stability so that is classified by wind shear exponent (). AEP is increased by 11% when atmosphere becomes to be stabilized ( > 0.2) than it is convective ( < 0.1). However, it is found that extreme wind shear ( > 0.3) is hazardous for power generation. This results represent that AEP calculated by EQ can provide improved accuracy to short-term wind power forecast and wind resource assessment.
Long-term change in sea level along the eastern coast of Korea was illustrated using four tide-gauge station (Pohang, Mukho, Sokcho, Ulleung) data, water temperature and salinity. Seasonal variation in the sea level change was dominant. The sea level change by steric height derived from water temperature and salinity was relatively lower than that measured from the tide-gauge stations. Sea level rising rate per year by steric height increased with latitude. The effect of salinity(water temperature) on the sea level change is greater in winter(in summer).