This transport cask for radioactive materials will be used in the Gijang reactor. It will transport the Ir-192 10,000 Ci or I-131 80 Ci. In this case, the safety evaluation, such as protection of leakage of radioactive material, and radiation shield should be carried out before it is used in the research reactor. The safety regulation requires various tests, such as water spray, free drop, penetration, and water immersion. But this paper considers only the regulations related with thermal-stress and drop impact under the normal conditions because it will be used only in the research reactor building. In this paper, coupled numerical analysis was performed using finite element simulation to investigate the effect of position of tungsten and lead to enhance the safety of transport cask. As a result of simulation, it was verified that the Tungsten-Lead structure is the most durable among the cases considered in the study with a viewpoint of thermal-stress and drop impact.
In this paper, as the transport cask was moved in the reactor, the structural integrity on the cask had to be evaluated in the normal transport condition. The drop height of the cask was determined by the weight of the cask in the normal transport condition by regulations about assessment test. It was determined that the drop height of the cask was 1.2 m by regulations. The velocity of the drop impact was calculated to perform the drop impact analysis by the principle of the conservation of energy. Using results of the simulation about the drop impact analysis, the structural integrity assessment on the transport cask was performed by ASME Boiler and Pressure Vessel Code.
방사선물질을 수송하기 위한 용기는 가상 사고조건에서도 안전해야만 한다. 운반용기 설계요구조건은 실험 및 유한요소 해석을 통해 구조적 건전성을 확보하여야 한다. 최근에는 실험보다 유한요소해석을 이용한 방법이 상대적으로 비용이 적기 때문에 주로 사용된다. 그러나 기계적인 반응이 복잡하기 때문에 프로그램을 적용하는 사용자의 방법에 의해 결과가 결정되고 해석하는 동안 여러가지 문제를 발생시킬 수 있다. 본 논문에서, 유한요소해석은 LS-DYNA3D와 ABAQUS/Explicit을 이용하여 운반용기의 9m 자유낙하충격실험에 대한 해석기술과 여러가지 손상을 갖는 경우를 발견하기 위해 연구하였다. 운반용기의 각각의 경우를 비교하고 사용후 핵연료 운반용기의 낙하 실험에 대해서 신뢰할 수 있는 비교적 간단한 해석 기술을 제안하였다.
원자력발전소의 1차 계통에서 오염된 장비들을 취급이 용이하고 안전하게 운반하기 위한 운반용기는 내부의 방사성 물질에 대한 방사능 평가에 의하여 방사성물질 A형 운반용기로 분류된다. 방사성물질 A형 운반용기는 IAEA Safety Standard Series No. ST-1 및 국내 원자력법 등 관련규정의 기술기준을 만족하여야 하는데, 운반용기는 중량에 따라 0.31.2m의 높이에서 소성이 일어나지 않는 단단한 바닥면으로 가장 심각한 손상을 주는 방향으로 낙하시키는 정상운반조건(normal transport conditions)에 대하여 구조적 건전성을 유지하여야 한다. 여기서는 ABAQUS/Explicit 코드를 이용하여 컨테이너형태의 A형 운반용기에 대하여 최대손상이 야기되는 0.9m 경사낙하조건에 대한 3차원 충격해석을 수행하고 구조적 건전성을 평가하였는데, 운반용기는 경사낙하시 코너피팅(corner fitting)의 분쇄(crush)에 의하여 대부분의 충격을 흡수하였으며 운반용기의 격납경계는 구조적 건전성을 유지하였다.
본 연구에서는 최근 개발중인 360 다발 장전용량의 중수로 사용후핵연료 운반용기에 대한 설계기준연료의 방사선원항 평가와 용기외부에서의 방사선량률 계산을 수행하였다. 그리고 국·내외 방사선적 안전성평가와 관련한 기술기준 부합여부를 판단하고 결과의 적합성을 제시하였다. 방사선원항으로 작용하는 설계기준연료 선정을 위해 월성원전에서 운영중인 운반 용기 및 두 가지 방식의 건식저장시설에 적용된 설계기준연료의 사양 및 특성을 조사하였다. 각 운반·저장 시스템 별 설계 기준연료의 연소도, 최소 냉각기간 및 중간저장시설로의 운반시점 등을 바탕으로 연소도 7,800 MWD/MTU와 최소 냉각기 간 6년을 설계기준연료로 설정하였다. 설계기준연료의 방사선원항은 SCALE 전산코드의 ORIGEN-ARP모듈을 이용하여 평가하였다. 운반용기의 방사선차폐평가는 MCNP6 전산코드를 이용하였으며, 기술기준에서 요구하는 운반용기 외부에서의 방사선량률 평가를 정상 및 사고조건으로 구분하여 수행하였다. 방사선량률 평가결과, 정상운반조건의 운반용기 표면 및 운반용기 표면 2 m 이격지점에서 계산된 최대 방사선량률은 각각 0.330 mSv·h-1와 0.065 mSv·h-1로 도출되어 선량률 제한치인 2.0 mSv^hr-1와 0.1 mSv^hr-1를 모두 만족하는 결과를 도출하였다. 또한 운반사고조건하 운반용기 표면 1 m 지점에서의 최대 방사선량률은 0.321 mSv·h-1로서 기술기준인 10.0 mSv·h-1 미만으로 평가되어, 대용량 중수로 사용후핵연료 운반용기는 방사선적 안전성을 확보하는 것으로 나타났다.