PURPOSES: Case studies of an asphalt-overlay project with a performance-based contract method were conducted on a national highway in Korea to evaluate the effect of the method on asphalt pavement maintenance. This study evaluated the procedure of the performance-based contract method.
METHODS: In this study, an asphalt-pavement maintenance project for a national highway was assessed with a performance-based contract to investigate the advantage of the new contract procedures. This is the first trial applying the performance-based contract to a pavementrehabilitation project in Korea. In the four case studies, the warranty period of the performance-based contract was designed for seven years. The research team monitored the construction site to compare the normal contract method with the performance-based contract method. The case studies’project sites were investigated after the end of the construction.
RESULTS : Based on the limited case studies, the performance-based contract method could extend the service life of the asphalt pavement and reduce the pavement-maintenance budget because the quality control was well managed by the contractors. However, a few construction laws would be necessary to apply the performance-based contract method in the future.
CONCLUSIONS : Using the performance-based contract, the construction company made great efforts to guarantee the warranty period and to apply the optimal maintenance method, based on the pavement distress condition. The contractor and the agency would need to understand the new performance-based contract system for it to be activated. Therefore, a proper education program for the performancebased contract system would be needed to educate the stakeholders regarding the procedures and their effects on the pavement management and maintenance.
As numbers of tunnel are increased, the necessity of temporary maintenance works of those tunnels is also increased. This study introduces new space truss frame system for the maintenace of tunnels. Proto-type model was analyzed and evaluated. The result shows that new system may contribute to save the maintenance cost and time.
본 연구는 터널의 유지, 보수, 보강에 필요한 가설공사용 스페이스 트러스 프레임 구조물을 소개한다. 기존 가설공사 시공방식과 장비들의 현황 및 문제점을 분석하고, 터널 설계의 핵심 구성요소를 파악함으로써, 제안된 새로운 가설 시공기술 시스템을 개발하는 과정을 순차적으로 설명한다. 그리고 개발된 가설 시스템을 발주처, 시공사, 터널 이용자 관점에서 사용성 및 경제성을 분석하고, 구조적인 안전성 검토와 최적단면 산정 평가를 상용 유한요소 해석프로그램인 ABAQUS 6.5로 구현하여 본 가설 시스템의 현장적용 기반을 구축한다.