Research is being actively conducted on the continuous thin plate casting method, which is used to manufacture magnesium alloy plate for plastic processing. This study applied a heat transfer solidification analysis method to the melt drag process. The heat transfer coefficient between the molten magnesium alloy metal and the roll in the thin plate manufacturing process using the melt drag method has not been clearly established until now, and the results were used to determine the temperature change. The estimated heat transfer coefficient for a roll speed of 30 m/min was 1.33 × 105 W/m2·K, which was very large compared to the heat transfer coefficient used in the solidification analysis of general aluminum castings. The heat transfer coefficient between the molten metal and the roll estimated in the range of the roll speed of 5 to 90 m/min was 1.42 × 105 to 8.95 × 104 W/m2·K. The cooling rate was calculated using a method based on the results of deriving the temperature change of the molten metal and the roll, using the estimated heat transfer coefficient. The DAS was estimated from the relationship between the cooling rate and DAS, and compared with the experimental value. When the magnesium alloy is manufactured by the melt drag method, the cooling rate of the thin plate is in the range of about 1.4 × 103 to 1.0 × 104 K/s.
In the modern industrial period, the introduction of mass production was most important progress in civilization. Die-casting process is one of main methods for mass production in the modern industry. The aluminum die-casting in the mold filling process is very complicated where flow momentum is the high velocity of the liquid metal. Actually, it is almost impossible in complex parts exactly to figure the mold filling performance out with the experimental knowledge. The aluminum die-castings are important processes in the automotive industry to produce the lightweight automobile bodies. Due to this condition, the simulation is going to be more critical role in the design procedure. Simulation can give the best solution of a casting system and also enhance the casting quality. The cost and time savings of the casting layout design are the most advantage of Computer Aided Engineering (CAE)..
Generally, the relations of casting conditions such as injection system, gate system, and cooling system should be considered when designing the casting layout. Due to the various relative matters of the above conditions, product defects such as defect extent and location are significantly difference. In this research by using the simulation software (AnyCasting), CAE simulation was conducted with three layout designs to find out the best alternative for the casting layout design of an automotive Oil Pan_BJ3E. In order to apply the simulation results into the production die-casting mold, they were analyzed and compared carefully. Internal porosities which are caused by air entrapments during the filling process were predicted and also the results of three models were compared with the modifications of the gate system and overflows. Internal porosities which are occurred during the solidification process are predicted with the solidification analysis. And also the results of the modified gate system are compared.
When manufacturing die casting mold, generally, the casting layout design should be considered based on the relations of injection system, casting condition, gate system, and cooling system. According to the various relations of the conditions, the location of product defects was differentiated. High-qualified products can be manufactured as those defects are controlled by the proper modifications of die casting mold with keeping the same conditions. In this research, Computer Aided Engineering (CAE) simulation was performed with the several layout designs in order to optimize the casting layout design of an automotive part (Housing). In order to apply them into the production die-casting mold, the simulation results were analyzed and compared carefully. With the filling process, internal porosities caused by air entrapments were predicted and also compared with the modification of the gate system and overflow. With the solidification analysis, internal porosities occurring during the solidification process were predicted and also compared with the modified gate system. The simulation results were also applied into the production die-casting mold in order to compare the results and verify them with the real casting samples.
This research developed ultra-pressure pump main body by using ductile cast iron FCD500, conducted quantitative analysis on following phenomenon of flow or solidification processing in cast processing for improvement of cast device, after extracting model from cast concluded as follows by brinel hardness test. after selecting the ideal condition of cast and it applied to cast of real product shape, discovered the ideal filling processing under the condition that temperature of molten metal was between 1300℃ and 1280℃. and after finishing filling, solidification was commenced rapidly when percentage of solidification completion was between 40%~50%, at that moment, the termperature was measured 1100℃. moreover under the condition of temperature below 900℃, keeping temperature on the center of parts for a certain period of time brings stability of stabilization of heat in parts and organizational stabilization of ductile cast iron. As the results of the casting method design, it was that the ductile cast parts of pump main body was obtained as the maximum HB of 220 was recorded and good test results were achieved
The plastic deformation behaviors for powder extrusion of rapidly soildified Al-Si-Fe alloys at high temperature were investigated. During extrusion of Al-Si-Fe alloys, primary Si and intermetallic compound in matrix are broken finely. Additionally, during extrusion metastable phase() intermetallic compound disappears and the equilibrium phase() is formed. In gereral, it was diffcult to establish optimum process variables for extrusion condition through experimentation, because this was costly and time-consuming. In this paper, in order to overcome these problems, we compared the experimental results to the finite element analysis for extrusion behaviors of rapidly solidified Al-Si-Fe alloys. This ingormation is expected to assist in improving rapidly solidified Al-Si alloys extrusion operations.
The densification behaviors of rapidly solidified Al-Si alloys under high temperature processing were investigated. In general, it was difficult to establish optimum process variables for forging condition through experimentation, because this was costly and time consuming. In this paper, to overcome these problems, we compared the experimental result to the finite element analysis for forging processes of rapidly solidified Al-Si alloys. The results of these simulations helped understand the distribution of relative density during various forging processes. This information is expected to assist in improving rapidly solidified Al-Si alloys forging operations.
Investigation on the extrusion of rapidly solidified Al-Si alloys was performed in order to develop an inexpensive production process of high strength parts. It is necessary to establish optimum process variables for the extruding condition through the experiments, because it is high cost and time consuming process. In this paper, the experimental results was compared to the finite element analysis for the extrusion of rapidly solidified Al-Si alloys. The results of this simulation helped to understand the distribution of relative density and effective stress for rapidly solidified Al-Si alloys during the extrusion process. This information is expected to assist in improving the extrusion operations of rapidly solidified Al-Si alloys.