본 연구에서는 Na2SO4 폐수 처리를 위한 바이폴라막 전기투석(bipolar membrane electrodialysis, BPED)에 적용하 기 위한 sulfonated poly(phenylence oxide) (SPPO) 기반 강화 양이온교환막(cation-exchange membrane, CEM)을 제조하고 그 성능을 평가하였다. 특히, 다양한 open area, opening size, 두께를 가지는 직조형 지지체를 사용하여, 지지체가 강화막의 물리 적 및 전기화학적 특성에 미치는 영향을 분석하였다. 실험 결과, open area와 opening size가 증가할수록 이오노머의 충진율 이 증가하고 이온 전도 경로가 개선되어 막의 전기적 저항이 감소하고 함수율은 증가하는 경향성을 나타내었다. 한편, OH- 이온은 함수율이 높은 조건에서 막을 통해 더 쉽게 투과하였으며, SO4 2‒ 이온은 지지체의 특성과는 상관없이 전반적으로 낮 은 투과도를 나타내었다. 또한 제조막의 특성과 산/알칼리 조건에서의 내화학성을 종합적으로 고려한 결과, polypropylene (PP)이 가장 적합한 보강재 소재로 판단되었으며, 이를 활용하여 제조한 강화막은 상용막 대비 우수한 인장강도와 구조적 안 정성을 나타내었다. 개발된 강화 CEM을 BPED에 적용한 결과, 상용막 대비 막을 통한 SO4 2‒ 누출이 현저히 억제되어 산/염 기 순도, 전류 효율, 및 에너지 효율이 향상됨을 확인할 수 있었다.
청정에너지는 원유 사용으로 인한 이산화탄소 배출로 환경오염이 계속 증가하는 이 시기에 필요한 에너지이다. 리튬 이온 배터리는 훌륭한 대안 중 하나이지만 막대한 수요로 인해 오염은 물론 비용이 증가한다. 배터리에서 사용한 리튬 을 재활용하는 것이 상기 문제를 해결하는 가장 좋은 방법이다. 정전 용량 탈이온화 공정(capacitive deionization, CDI)에서 는, 셀을 통과하는 전해질에 존재하는 양이온과 음이온이 전극 물질로 전환되고 전극의 극성이 반대가 됨으로써 탈착된다. 전 극의 특성을 개선하는 것이 리튬 이온 회수를 향상시키는 데 있어 핵심이다. 주요 문제는 리튬 이온의 낮은 탈삽입과 선택성 이다. 망간 산화물과 같은 전이 금속 산화물이 탄소 나노튜브로 코팅될 경우, 리튬 회수 성능이 향상된다. 본 리뷰 논문에서 는 폴리머 기반 전극과 복합 전극에 의한 리튬 회수에 대해 설명하며, 최근 전극 소재의 발전이 CDI 성능 향상에 어떻게 기 여하는지에 대해 초점을 맞춘다. 이러한 발전이 리튬 회수 효율 개선에 어떻게 기여하는지 설명하며, 기존 문헌을 보완하고 확장하는 관점을 제시한다.
This study proposes a weighted ensemble deep learning framework for accurately predicting the State of Health (SOH) of lithium-ion batteries. Three distinct model architectures—CNN-LSTM, Transformer-LSTM, and CEEMDAN-BiGRU—are combined using a normalized inverse RMSE-based weighting scheme to enhance predictive performance. Unlike conventional approaches using fixed hyperparameter settings, this study employs Bayesian Optimization via Optuna to automatically tune key hyperparameters such as time steps (range: 10-35) and hidden units (range: 32-128). To ensure robustness and reproducibility, ten independent runs were conducted with different random seeds. Experimental evaluations were performed using the NASA Ames B0047 cell discharge dataset. The ensemble model achieved an average RMSE of 0.01381 with a standard deviation of ±0.00190, outperforming the best single model (CEEMDAN-BiGRU, average RMSE: 0.01487) in both accuracy and stability. Additionally, the ensemble's average inference time of 3.83 seconds demonstrates its practical feasibility for real-time Battery Management System (BMS) integration. The proposed framework effectively leverages complementary model characteristics and automated optimization strategies to provide accurate and stable SOH predictions for lithium-ion batteries.
본 연구는 수직농장에서 상업적 생산에 적합한 왜성 토마토 를 대상으로 음이온을 처리하고, 생육단계별(영양생장, 생식 생장) 생육 특성과 기체교환 활성 반응을 분석하여, 과채류에 대한 음이온의 적용 가능성을 평가하고자 수행되었다. 실험 을 위해 왜성 토마토 묘를 온도 24도, 습도60%, 이산화탄소 농도 600μmol·mol-1, 광도 320μmol·m-2·s-1 PPFD, white LED, 광주기16h의 수직농장 모듈에서 5주간 재배하였다. 음 이온은 광주기 시간동안 12 × 105ions∙cm-3의 음이온을 처리 하였다. 정식 후 5주 동안 매주 생육조사를 진행하였고, 정식 후 4주 동안 매주 광합성율과 증산율을 측정하였다. 정식 1주 차 광합성율은 음이온 처리구에서 유의적으로 높게 나타났으 나, 이후에는 광합성율과 증산율 모두 처리구간 유의 차이는 확인되지 않았으나, 전반적으로 음이온 처리구가 대조구보다 높은 수치를 나타내는 경향을 보였다. 영양생장 지표들은 처 리간 차이가 크지 않았으나, 생식 기관의 발달(화방수, 꽃수, 과실수)은 대조구에 비해 유의적으로 높은 값을 나타냈다. 이 러한 결과는 음이온 처리가 과채류인 왜성 토마토의 생식생장 을 촉진하고 과실 생산량을 증가시켰음을 확인하여, 과채류 에 음이온의 적용 가능성을 확인하였다. 향후에는 음이온 처 리 농도의 최적화 및 수확한 과실의 품질 비교를 포함한 후속 연구가 필요하다.
연료전지 핵심 소재인 고분자 전해질막은 높은 내화학성과 수소이온전도성을 갖는 과불소계 술폰산 이오노머가 주로 사용된다. 하지만 이러한 이오노머조차도 연료전지 구동 중 발생하는 라디칼 공격으로 인해 화학적 분해가 발생하여 장 기 내구성 확보에 어려움을 겪고 있다. 이를 완화하기 위해 라디칼 스캐빈저로 도입이 간편한 이온형 산화방지제를 적용하고 있으나, 연료전지 구동 중 전극 간 전위차에 의해 세륨 이온이 이동(cerium ion migration)하는 현상으로 스캐빈저 효과가 감 소하는 문제가 있다. 본 연구에서는 강화막 내에서 세륨 이온의 이동성을 조절하기 위한 방안으로 폴리에틸렌글리콜(PEG) 도입을 제시하였으며, 이를 통해 PEG 도입이 강화막의 내구성에 미치는 영향을 조사하였다.