This study proposes automation measures of anti-collision detection within EMS(Electrical Mono Rail System). EMS is a full automation transport equipment mainly used in production process, such as car manufacturing planets, electronic factories and food processing plants among manufactures. This research paper presents a plan for creating a smart EMS and overcoming an weakness of EMS. The mechanical strength and durability are ensured in the expected major collision region by performing a CAE analysis. Automated equipment has to respond to a sudden accident which is based on the self-image recording function and wireless transmission function. This equipment will record a sudden crash course in real time and record it. This record eventually becomes known to distant places with users. Because of this equipment, the unexpected accident is prevented and is reduced a human damage and is expected to improve productivity. Therefore, this research results are as follows. The first, the full automated conveyor controller is developed within from 3 to 4 millimeter stop range according to increase of load weight in 1.5 tons. The second, wireless image recording system for the measures of unexpected accident is developed through the CAE analysis of main parts for the exact stop control. The most important final purpose of this research is developed the wireless image recording system for the unexpected accident.
경상북도 의성지역의 벼 자동화 육묘시설에서 파종기별 적정 묘대기간을 선정하기 위하여 실험한 결과를 요약하면 다음과 같다. 파종기가 늦어지고 육묘일수가 길어질수록 묘초장은 증가하였다. 의성지역에서 이앙 가능한 묘초장 10cm 이상을 확보하기 위해서는 10일묘는 5월20일, 15일묘는 5월5일이 파종적기로 나타났다. 묘충실도는 파종기가 늦어지고 육묘일수가 길어질수록 불량해졌는데, 10일묘의 경우는 6월 20일 이후, 15일 묘는 5월 10일 이후 파종에서 각각 묘충실도가 크게 나빠지는 경향이었다. 주당수수는 육묘기간이 길어질수록 감소하였고, 수당립수, 등숙률 및 천립중은 일정한 경향이 없는 것으로 나타났다. 1모작인 5월 하순 이앙구의 정조수량은 10일묘에서 748 kg/10a로 가장 높았고 묘대일수가 길어질수록 감소하였으며, 2모작인 6월 27일 이앙구에서도 10일묘를 이앙했을 때 수량성이 가장 높았다.
건전묘 생산을 위한 육묘 콘테이너의 선반 간격과 상자간의 배치간격을 달리하여 육묘하면서 이들이 모 생육에 미치는 영향을 조사하여 얻어진 결과를 요약하면 다음과 같다. 콘테이너의 선반 간격이 17 cm 에서 23 cm로 넓어짐에 따라 묘초장이 증가하였고 그 증가폭은 6월 10일 파종에서보다 5월10일 파종에서, 육묘일수가 길어질수록 큰 편이었다. 콘테이너의 선반간격뿐만 아니라 상자간의 배치간격도 모의 생장에 미치는 영향이 매우 컸으며 상자의 배치간격이 넓을수록 초장이 짧아지고 묘충실도는 증가하는 경향이었다. 육묘 콘테이너에 치상된 육묘상자의 위치에 따른 조도는 하단에서 상단으로 올라갈수록 높아졌고, 묘초장은 상단에서 하단으로 갈수록 큰 편이었다. 육묘콘테이너의 선반간격을 20 cm로 하고 육묘상자와 상자사이를 3 cm 정도 띄웠을 때 모의 황화현상은 크게 감소하였다.
겨울철 오이 시설재배에서 태양열 시스템을 이용한 지중가온의 효과를 구명하고자 지중 40 cm에 15 mm의 PPC파이프를 130 cm이랑 에 4열 매설한 후 지중 20 cm의 지온을 22~23℃로 설정한 후 1996년 11월 7일부터 1997년 1월 30일까지 일정한 온도로 유지, 관리하여 무가온구와 가온구의 지상부, 지하부 및 수량을 비교시험한 결과는 다음과 같다 1) 지중가온에 의한 지온확보는 가온구는 15~20 cm에서 22℃ 정도의 평균온도를 확보할 수 있었고, 무가온구는 평균 17~18℃ 정도였다 2) 정식 30일 정도에서 초기생육은 가온구가 초장, 경경, 엽수, 엽면적 등 모두 증가하였으며 특히 초장 27%, 엽수 51%, 엽면적은 150% 정도 증가하였다. 또 지상부 평균 증가율도 관행대비 가온구 증가율이 117% 정도였다. 3) 가온구의 지하부 뿌리의 생장성이 관행구에 비하여 평균 56% 정도 증가하였다 4) 과수의 수량면에서도 총과수가 무가온구 313개, 가온구 614개로 가온구가 196% 정도 증수되었다.
태양열 에너지의 효율적인 이용과 자동화 장치의 개발을 목표로 지중가온의 온도변화 특성을 실험. 분석한 결과는 다음과 같다. 1) 10월 13일의 1일 하우스 내기온이 주야간에 24℃의 차이가 있으며, 무가온시 지온변화는 지중 10 m 부근에서 6℃, 지중 20 cm 부근에서는 3℃정도의 차이를 보이고 있다. 2) 20시경에 내기온과 지온차가 가장 작은 것으로 나타났으며, 지중 20 cm 부근의 온도변화는 내기온이 가장 낮은 오전 7시부터 약 3시간이 경과된 오전 10시에 최저가 되었다 3) 가온수의 온도를 40℃, 50℃, 60℃로 변화하였을 때 지중 10 cm의 최저은도는 약 20℃ 지중 20 cm의 최저온도는 약 23℃로 나타나 가온온도가 40℃ 이상일 경우 가온온도에 따른 지중 10~20 cm사이의 온도차는 매우 작았다. 4) 지중 15~20 cm의 지온이 20℃가 되기 위해서는 가온수의 온도를 40℃ 이하가 되도록 설정하여야한다. 5) 가온수의 온도가 40℃, 50℃, 60℃이고 파이프 매설 깊이가 12 m일 경우 유입구와 유출구의 1일 평균온도차는 40℃일 경우 3.5℃ 50℃일 경우 4.4℃, 60℃일 경우 5.4℃정도로 이 구간에서 온도변화식은 T = 0.09591T+2.5451(R2= 0.9966)로 거의 선형적으로 변화하였다. 6) 가온수 온도가 40℃의 경우 지중 15~20 cm, 50℃의 경우는 지중 13~19 cm, 60℃의 경우는 12~17 cm 부근이 경계영역으로 판단되었다. 7) 재배기간중 하우스 내기온을 11℃ 이상으로 유지하고, 가온수의 온도를 28℃로 순환 결과 지중 15 cm 이하에서 최저지온를 20℃ 이상의 온도를 유지할 수 있어 저온수공급에 의한 온도상승효과가 뚜렷이 나타났다. 8) 가온수의 온도를 28℃로 하여 지중가온 한 결과 지중 15~20 cm사이에 온도변화는 무가온구에 비하여 공히 4℃~7℃가 상승되었다.